本篇論文中,我們首先考慮兩個相互競爭的物種在異構環境的Lotka-Volter- ra competition-diffusion-advection model。這兩類物種除了他們的流動策略外,是完全相同的,而不同的流動策略是指:一類是隨機擴散,另一類則是“較聰明”─ 結合的隨機擴散和定向運動增加的環境梯度。在[3]裡面,Prof. Chen和Prof. Lou給了一個猜想,如果環境函數有多個局部極大值,那麼“較聰明”的物種,將會集中在所有該環境函數的局部極大值。然而,在[6]裡,Prof. Ni 和Dr. Lam發現,假如隨機擴散的物種在環境函數的局部極大值高於環境函數,會導致“較聰明”的物種被滅絕。在這篇文章中,我們考慮三類物種的Lotka-Volterra competition-diffusion-advection model,並期望會有與Prof. Ni 和Dr. Lam類似的結論可以被證明。 In this thesis, we first consider a Lotka-Volterra competition-diffusion-advection model for two competing species in a heterogeneous environment. The two species are identical except for their dispersal strategies: One is just random diffusion while the other is "smarter"- a combination of random diffusion and a directed movement up the environmental gradient. In [3], Chen and Lou conjectured that if the environment function $m$ has multiple local maxima, then the "smarter" species must concentrate at all local maximum of m. Nevertheless, in [6], Lam and Ni found that the "smarter" species will die out if the local maximum of m is smaller than the density of the other species. In this article, we consider a model of three species and expect that the related results will be similar to those in [6].