中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48282
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41672993      Online Users : 1357
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48282


    Title: 在Sofic Shift上的多重碎型分析;Multi-fractal Analysis for Sofic Shift
    Authors: 陳玎如;Ting-Ju Chen
    Contributors: 數學研究所
    Keywords: Sofic 系統;Gibbs-like 測度;有限逼近法;譜維度;sofic system;Gibbs-like measure;cut-off method;Dimension spectrum
    Date: 2011-06-27
    Issue Date: 2012-01-05 14:43:45 (UTC+8)
    Abstract: 在本篇論文中,我們研究矩陣值勢能在sofic 系統上的譜維度。考慮跟有限座標有關的正矩陣值勢能,透過建構quasi-Bernoulli測度得到譜維度,而且利用有限逼近的方法,我們可以把結論推廣到跟無限座標有關的矩陣值勢能的情況上。最後,我們給一個可以確切算出譜維度的例子。 We study the dimension spectrum of sofic system with the potential which is matrix-valued. For positive and finite-coordinate dependent matrix potential, we set up the dimension spectrum by constructing the quasi-Bernoulli measure and the cut-off method is applied to deal with the infinite-coordinate dependent case. Finally, we give an example which we can compute the spectrum concretely.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML674View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明