中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48286
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 42580091      Online Users : 1383
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48286


    Title: Regularized Buckley-Leverett方程的行進波解;Traveling Wave Solutions to the Regularized Buckley-Leverett Equation
    Authors: 呂佳孃;Chia-niang Lu
    Contributors: 數學研究所
    Keywords: 守恆定律;兩點邊界值問題;Poincar´;e-Bendixson 定理;Stable Manifold 定理;Regularized Buckley-Leverett 方程;行進波;dispersive方程;Stable Manifold Theorem;traveling waves;conservation laws;dispersive equations;Regularized Buckley-Leverett equation;Poincar´;e-Bendixson Theorem;two point boundary value problem
    Date: 2011-07-06
    Issue Date: 2012-01-05 14:43:58 (UTC+8)
    Abstract: 在本文中,主要研究Regularized Buckley-Leverett 方程行進波解的存在性,這個問題可以簡化成兩點邊界值問題的微分方程。在給定邊界條件下,使得這個邊界值問題可以有三個平衡點。在特殊的邊界條件下,行進波解的存在性是可以在Poincare-Bendixson 定理和在Stable Manifold定理下的trapping region method證明出來。 In this thesis, we study the existence of traveling wave solutions to the regularized Buckley-Leverett equation. The problem can be reduced to a two point boundary value problem of some ordinary differential equation. We give the conditions of boundary data such that the two point boundary value problem has exactly three equilibria. The existence of traveling wave solutions for some special boundary data are provided by Poincar´e-Bendixson Theorem, and trapping region method for Stable Manifold Theorem.
    Appears in Collections:[Graduate Institute of Mathematics] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML615View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明