中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48417
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 41923095      在线人数 : 603
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/48417


    题名: 快速平衡粒子群最佳化方法;Swiftly balanced particle swarm optimization
    作者: 陳珈妤;Chia-Yu Chen
    贡献者: 電機工程研究所
    关键词: 粒子群最佳化方法;particle swarm optimization
    日期: 2011-06-28
    上传时间: 2012-01-05 14:54:16 (UTC+8)
    摘要: 快速平衡粒子群最佳化方法(Swiftly balanced particle swarm optimization, SBSPO)是一種改良的粒子最佳化方法(Particle swarm optimization, PSO),利用改變加速係數來平衡個體經驗及群體經驗,改善粒子最佳化方法易落入區域最佳解的缺點。利用粒子群收斂狀況決定加速係數大小,加速係數大小被設定為三段線性直線,一旦得知粒子群收斂狀況,則可求得一組適合的加速係數。因為能利用粒子群收斂狀況快速求得一組加速係數大小,又因這組加速係數能平衡個體經驗與群體經驗,因此名為快速平衡粒子群最佳化方法。本文也將二次內插演算法(Quadratic interpolation)與快速平衡粒子群最佳化方法(SBPSO)做結合,名為SBPSO-QI。另外提出考慮兩個群體最佳解來改良粒子最佳化方法,讓PSO在處理複雜問題時,能跳出區域最佳解,求得全域最佳解,並將此方法與SBPSO做結合,名為SBPSO-2G。並將提出的SBPSO、SBPSO-QI與SBPSO-2G與8種不同的粒子最佳化方法做比較。經模擬結果顯示,提出的方法對於多數的測詴函數均有較優越的表現。本文所提出的快速平衡粒子群最佳化方法保有粒子最佳化方法容易實現的特性,同時改良粒子最佳化方法易落入區域最佳解的缺點。 Swiftly balanced particle swarm optimization (SBPSO) is a new variant of particle swarm optimization which can quickly balanced the personal and social experience. A new strategy of the acceleration coefficients makes SBPSO more effective, because the swarm can efficiently adjust the velocity by changing the acceleration coefficients. The acceleration coefficients of SBPSO are obtained by three segment line dependent on the swarm convergence. The advantage is that SBPSO become more accurate and also easy to implement. The acceleration coefficients of SBPSO can be applied to many variants of PSO. In this paper, incorporating the acceleration coefficients of SBPSO and The quadratic interpolation PSO, named SBPSO-QI. In the result section, compared the proposed SBPSO and SBPSO-QI with standard PSO (SPSO), quadratic interpolation PSO (QIPSO), unified PSO (UPSO), fully informed particle swarm (FIPS), dynamic multi-swarm PSO (DMSPSO), adaptive fuzzy PSO (AFPSO), and PSO with time-varying acceleration coefficients (PSO-TVAC) across sixteen benchmark functions.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML396检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明