中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/48506
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41774329      Online Users : 2050
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/48506


    Title: 基於視訊場景資料蒐集與訓練之自適應車流估計機制;An Adaptive Traffic Flow Analysis Scheme Based on Scene-Specific Sample Collection and Training
    Authors: 程凱驛;Kai-yi Cheng
    Contributors: 資訊工程研究所
    Keywords: 車輛;ISM;SVM;SURF;自我訓練;Self-Training;Vehicle;SVM;ISM;SURF
    Date: 2011-08-18
    Issue Date: 2012-01-05 14:56:38 (UTC+8)
    Abstract: 本研究提出針對固定式道路監控攝影機所拍攝畫面之分析工具,用於獲取道路上的交通資訊,以對車流進行估算。本論文主要分為兩個部分:第一部分為模型訓練機制,我們首先對畫面內容進行去背景,並利用形態學方法得到可能的車輛遮罩,再對遮罩面積進行統計分析後,取得畫面中可能之不同種類車輛大小資訊,並依此收集不同種類車輛之樣本影像。在每個區域自動取得定量之訓練樣本後,我們以支援向量機 (Support Vector Machine)搭配隱式型態模式(Implicit Shape Model)的技術,對資料進行訓練及相關處理,此自適應演算方式可以大幅減少模型建置的人力需求。第二部分為辨識機制,我們使用訓練完成的SVM對特徵點進行分類過濾,再利用訓練完成的ISM對場景中的車輛影像進行辨識,協助解決車輛影像交疊問題,同時提升車輛分類準確度。實驗結果顯示這個機制確實能夠適應不同的交通場景,有效對車輛進行辨識,達成車輛計數或車流估算的目的。 This research presents a framework of analyzing the traffic information in the surveillance videos from the static roadside cameras to assist solving the vehicle occlusion problem for more accurate traffic flow estimation and vehicle classification. The proposed scheme consists of two main parts. The first part is a model training mechanism, in which the traffic and vehicle information will be collected from the characteristics of masks. Their statistics are employed to automatically establish the models of scene, including the implicit shape model of vehicles and the support vector machine of feature points. It should be noted that the proposed self-training mechanism can reduce a great deal of human efforts. The second part adopts the established implicit shape model and support vector machine to recognize vehicles. Each feature point is classified into a vehicle type and processed by the corresponding ISM. Experimental results demonstrate that the proposed scheme can deal with the scenes with different characteristics in the traffic surveillance videos.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML552View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明