中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/49882
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 46932857      Online Users : 570
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/49882


    Title: Experimental study on the whip elimination of rotor-bearing systems with electromagnetic exciters
    Authors: Fan,CC;Pan,MC
    Contributors: 生物醫學工程研究所
    Keywords: JOURNAL BEARINGS;FLEXIBLE ROTOR;DYNAMICS;DESIGN;MODEL
    Date: 2011
    Issue Date: 2012-03-27 16:25:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The elimination of whip using electromagnetic exciters (EEs) is investigated in this paper. First, mathematical models of a rotor-bearing system are derived. The threshold of instability determining if the rotor-bearing system experiences fluid-induced instability is obtained. Then, an experimental rotor-bearing system is designed and constructed to justify the elimination of whip, and orbit, spectrum, and spectrum cascade plots are obtained from the experimental data. The proposed procedure applies root locus plots to simulate the threshold of instability, and the spring model is used to compute the stiffness that the system needs to address the whip problem. Moreover, design examples are illustrated to explain the calculation process that tackles the proportional (simulating stiffness) and derivative (simulating damping) parameters of the EE to improve the stiffnesses of the rotor-bearing system. The main contribution of the present experimental work is that by using the EE it is possible to increase the stiffness of the rotor-bearing system and lead to the rotor-bearing system with a higher threshold of stability and eliminate the whip instability. (C) 2010 Elsevier Ltd. All rights reserved.
    Relation: MECHANISM AND MACHINE THEORY
    Appears in Collections:[Institute of Biomedical Engineering] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML709View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明