English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43366428      線上人數 : 1098
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50200


    題名: Bayesian decision theory for support vector machines: Imbalance measurement and feature optimization
    作者: Hsu,CC;Wang,KS;Chang,SH
    貢獻者: 機械工程學系
    日期: 2011
    上傳時間: 2012-03-27 17:06:17 (UTC+8)
    出版者: 國立中央大學
    摘要: Classification approaches usually present the poor generalization performance with an apparent class imbalance problem. Surely, a measures of the quality of the possible models reflected the remaining uncertainty in the class imbalance on learning. The purpose of our learning method is to lead an attractive pragmatic expansion scheme of the Bayesian approach to assess how well it is aligned with the class imbalance problem. Thus, we propose a method with a model assessment of the interplay between various classification decisions using probability, corresponding decision costs, and quadratic program of optimal margin classifier called: Bayesian Support Vector Machines (BSVMs) learning strategy. In the framework, we did modify in the objects and conditions of primal problem to reproduce an appropriate learning rule for an observation sample. The experiments on several existing data sets showed that BSVMs may appropriately capture the true relationship between the inputs and outputs by experimental evidence. (C) 2010 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[機械工程學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML513檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明