中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50319
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78852/78852 (100%)
造访人次 : 37793261      在线人数 : 705
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50319


    题名: Characteristics and origin of quasi-biweekly oscillation over the western North Pacific during boreal summer
    作者: Chen,GH;Sui,CH
    贡献者: 大氣物理研究所
    关键词: SYNOPTIC-SCALE DISTURBANCES;FREQUENCY EQUATORIAL WAVES;ROSSBY-GRAVITY WAVES;SHEARED ZONAL FLOW;TROPICAL CYCLOGENESIS;INTRASEASONAL OSCILLATION;MONSOON;CIRCULATION;CONVECTION;PROPAGATION
    日期: 2010
    上传时间: 2012-03-27 17:29:10 (UTC+8)
    出版者: 國立中央大學
    摘要: This study investigates the structure, energetic, and origin of quasi-biweekly oscillation (QBWO) over the western North Pacific (WNP), using NCEP reanalyses for the years 2000-2007. In the context of vorticity there appears to be a significant QBWO mode over the WNP during the summer. QBWO emerges from the equatorial region and propagates northwestward. Its horizontal structure exhibits a slight southwest-northeast tilt but mainly longitudinal elongation. In the vertical the QBWO has a northwest tilt with height that gives rise to a structure of the first baroclinic mode. The centers of vorticity and vertical motion near the equator show a phase lag of about one-quarter wavelength, consistent with the characteristics of equatorial waves, whereas the cyclonic circulation is tightly coupled with anomalous convection as the wave moves away from the equator. Energetic analysis of the QBWO reveals that diabatic heating in the tropics and baroclinic processes in the subtropics play important roles in the generation of eddy available potential energy (EAPE). In turn, the conversion from EAPE to eddy kinetic energy (EKE) and the barotropic conversion are major sources for EKE to compensate the loss by EKE redistribution and dissipation. Tracing the QBWO to equatorial disturbances, our results show some features of equatorially trapped n = 1 Rossby mode, such as phase speed and group velocity. This mode is generally characterized by a zonal planetary wave number of about 6 and nearly symmetric circulation about the equator. A typical case from 2002 is chosen to illustrate that the origin of the QBWO is closely associated with the theoretical equatorial Rossby wave.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES
    显示于类别:[大氣物理研究所 ] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML518检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明