English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23131535      Online Users : 704
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50392

    Title: Precipitation Forecasting Using Doppler Radar Data, a Cloud Model with Adjoint, and the Weather Research and Forecasting Model: Real Case Studies during SoWMEX in Taiwan
    Authors: Tai,SL;Liou,YC;Sun,JZ;Chang,SF;Kuo,MC
    Contributors: 大氣物理研究所
    Date: 2011
    Issue Date: 2012-03-27 17:30:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The quantitative precipitation forecast (QPF) capability of the Variational Doppler Radar Analysis System (VDRAS) is investigated in the Taiwan area, where the complex topography and surrounding oceans pose great challenges to accurate rainfall prediction. Two real cases observed during intensive operation periods (IOPs) 4 and 8 of the 2008 Southwest Monsoon Experiment (SoWMEX) are selected for this study. Experiments are first carried out to explore the sensitivity of the retrieved fields and model forecasts with respect to different background fields. All results after assimilation of the Doppler radar data indicate that the principal kinematic and thermodynamic features recovered by the VDRAS four-dimensional variational data assimilation (4DVAR) technique are rather reasonable. Starting from a background field generated by blending ground-based in situ measurements (radiosonde and surface mesonet station) and reanalysis data over the oceans, VDRAS is capable of capturing the evolution of the major precipitation systems after 2 h of simulation. The model QPF capability is generally comparable to or better than that obtained using only in situ observations or reanalysis data to prepare the background fields. In a second set of experiments, it is proposed to merge the VDRAS analysis field with the Weather Research and Forecasting Model (WRF), and let the latter continue with the following model integration. The results indicate that through this combination, the performance of the model QPF can be further improved. The accuracy of the predicted 2-h accumulated rainfall turns out to be significantly higher than that generated by using VDRAS or WRF alone. This can be attributed to the assimilation of meso- and convective-scale information, embedded in the radar data. into VDRAS, and to better treatment of the topographic effects by the WRF simulation. The results illustrated in this study demonstrate a feasible extension for the application of VDRAS in other regions with similar geographic conditions and observational limitations.
    Appears in Collections:[大氣物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明