English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23130858      Online Users : 674
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50396

    Title: Statistical analysis of observed and simulated hourly surface wind in the vicinity of the Panama Canal
    Authors: Cheng,FY;Georgakakos,KP
    Contributors: 大氣物理研究所
    Date: 2011
    Issue Date: 2012-03-27 17:30:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Surface wind patterns at the Panama Canal vicinity are identified on the basis of 6 years of observed hourly surface wind data and with the use of high-resolution numerical model simulations. Statistical analysis of the observed wind at various stations in the Panama Canal is presented, together with the analysis of simulated surface wind fields that are obtained from the MM5 mesoscale meteorological model using surface wind assimilation and forced by North American regional reanalysis data. The performance analysis indicates that the 2-km-resolution MM5 model surface wind simulations have skill when compared with the observations at the measurement sites. The analysis of the wind fields for the period 2002-2007 shows that the dry season (January to April) is more spatially and temporally coherent than the wet season in the region. The simulated wind shows that the average wind speed reaches up to 7-8 m s(-1) and the frequency of exceeding 5 m s(-1) reaches up to 0.7-0.8 in Lake Gatun, the entrance/exit of the Canal in the Caribbean and Pacific coasts, and at high elevations. The dry season exhibits higher climatological wind speeds and exceedence frequencies than the wet season but the wet season shows greater spatial variability. For both seasons, the morning hours have lower average winds than the evening hours. The analysis underlines the significant influence of convection, sea breeze and local conditions (elevation gradients and land surface cover) in the observed and simulated surface wind patterns. The information presented herein, particularly as regards the Canal centerline results, may be useful for identifying the effects of air pollution from sources aboard transiting cargo ships on large communities in the Canal vicinity (e. g. Panama City). Information presented is also relevant to regional wind energy studies and fog formation analyses. Copyright (C) 2010 Royal Meteorological Society
    Appears in Collections:[大氣物理研究所 ] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明