English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42777774      線上人數 : 1065
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50546


    題名: Relation between length-of-day variation and angular momentum of geophysical fluids
    作者: Chao,BF;Yan,HM
    貢獻者: 地球科學系
    關鍵詞: WOBBLE;SCALES;EARTH;MODEL
    日期: 2010
    上傳時間: 2012-03-27 17:36:33 (UTC+8)
    出版者: 國立中央大學
    摘要: The remarkable relation well observed between variation in the length of day (Delta LOD) and variation in the axial atmospheric angular momentum (Delta AAM) (plus the oceanic counterpart, to a much lesser extent) is a consequence of the conservation of angular momentum on planet Earth. Quantification of the exact Delta LOD-Delta AAM relation, which we seek in the present study, depends significantly on the extent to which the core participates, or is dynamically coupled with the mantle, in transmission of the axial Delta AAM from the mantle to the core. If, after conversion to the equivalent Delta LOD assuming core-mantle decoupling (as in current standard practice), the calculated axial Delta AAM (according to atmospheric general circulation models [GCMs]) is systematically greater than the observed Delta LOD, then we can conclude the presence, and, furthermore, estimate the strength, of the said dynamic core-mantle coupling. However, in this study we find the opposite instead, that the calculated Delta AAM (plus the small oceanic counterpart) is smaller than the observed Delta LOD by 10%-20% consistently across the intraseasonal and seasonal time scales. Our main logical conclusion is that the atmospheric GCMs in general underpredict the Delta AAM, by at least 10%-20% at the mentioned time scales, a fact of importance with respect to the assessment of GCMs. Therefore, the systematic discrepancy found between the Delta AAM-predicted and the observed Delta LOD masks the relevant information on core-mantle coupling that we seek.
    關聯: JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH
    顯示於類別:[地球科學學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML675檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明