中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50627
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78818/78818 (100%)
Visitors : 34752310      Online Users : 804
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50627


    Title: Assessment of ZTD derived from ECMWF/NCEP data with GPS ZTD over China
    Authors: Chen,QM;Song,SL;Heise,S;Liou,YA;Zhu,WY;Zhao,JY
    Contributors: 太空及遙測研究中心
    Keywords: DELAYS;MODELS
    Date: 2011
    Issue Date: 2012-03-27 17:49:24 (UTC+8)
    Publisher: 國立中央大學
    Abstract: The accuracy and feasibility of computing the zenith tropospheric delays (ZTDs) from data of the European Center for Medium-Range Weather Forecasts (ECMWF) and the United States National Centers for Environmental Prediction (NCEP) are studied. The ZTDs are calculated from ECMWF/NCEP pressure-level data by integration and from the surface data with the Saastamoinen model method and then compared with the solutions measured from 28 global positioning system (GPS) stations of the Crustal Movement Observation Network of China (CMONOC) for 1 year. The results are as follows: (1) the error of the integration method is 1-3 cm less than that of the Saastamoinen model method. The agreement between the ECMWF ZTD and GPS ZTD is better than that between NCEP ZTD and GPS ZTD; (2) the bias and root mean square difference (RMSD), especially the latter, have a seasonal variation, and the RMSD decreases with increasing altitude while the variation with latitude is not obvious; and (3) when using the full horizontal resolution of 0.5A degrees A xA 0.5A degrees of the ECMWF meteorological data in place of a reduced 2.5A degrees A xA 2.5A degrees grid, the mean RMSD between GPS and ECMWF ZTD decreases by 4.5 mm. These results illuminated the accuracy and feasibility of computing the tropospheric delays and establishing the ZTD prediction model over China for navigation and positioning with ECMWF and NCEP data.
    Relation: GPS SOLUTIONS
    Appears in Collections:[Center for Space and Remote Sensing Research ] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML713View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明