English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41626928      線上人數 : 2301
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/50649


    題名: Improving polyp detection algorithms for CT colonography: Pareto front approach
    作者: Huang,A;Li,JA;Summers,RM;Petrick,N;Hara,AK
    貢獻者: 數據分析方法研究中心
    關鍵詞: COMPUTER-AIDED DIAGNOSIS;TOMOGRAPHIC VIRTUAL COLONOSCOPY;SUPPORT VECTOR MACHINES;FINITE-SAMPLE SIZE;COLONIC POLYPS;COLORECTAL NEOPLASIA;FEATURE-SELECTION;NEURAL-NETWORKS;CLASSIFICATION;SEGMENTATION
    日期: 2010
    上傳時間: 2012-03-27 17:50:13 (UTC+8)
    出版者: 國立中央大學
    摘要: We investigated a Pareto front approach to improve polyp detection algorithms for CT colonography (CTC). A dataset of 56 CTC colon surfaces with 87 proven positive detections of 53 polyps sized 4-60 mm was used to evaluate the performance of a one-step and a two-step curvature-based region growing algorithm. The algorithmic performance was statistically evaluated and compared based on the Pareto optimal solutions from 20 experiments by evolutionary algorithms. The false positive rate was lower (p < 0.05) by the two-step algorithm than by the one-step for 63% of all possible operating points. While operating at a suitable sensitivity level such as 90.8% (79/87) or 88.5% (77/87), the false positive rate was reduced by 24.4% (95% confidence intervals 17.9-31.0%) or 45.8% (95% confidence intervals 40.1-51.0%), respectively. We demonstrated that, with a proper experimental design, the Pareto optimization process can effectively help in fine-tuning and redesigning polyp detection algorithms. (C) 2010 Elsevier B.V. All rights reserved.
    關聯: PATTERN RECOGNITION LETTERS
    顯示於類別:[數據分析方法研究中心 ] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML686檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明