中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/50695
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 35036444      Online Users : 1585
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50695


    Title: Effect of heat treatment on stability of gold particle modified carbon supported Pt-Ru anode catalysts for a direct methanol fuel cell
    Authors: Li,XW;Liu,JY;Huang,QH;Vogel,W;Akins,DL;Yang,H
    Contributors: 化學學系
    Keywords: OXYGEN-REDUCTION;OXIDATION;ELECTROCATALYSTS;ELECTROOXIDATION;RUTHENIUM;STABILIZATION;NANOPARTICLES;DISSOLUTION;MEMBRANE;NETWORKS
    Date: 2010
    Issue Date: 2012-03-27 18:08:06 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Carbon supported Au-PtRu (Au-PtRu/C) catalysts were prepared as the anodic catalysts for the direct methanol fuel cell (DMFC). The procedure involved simple deposition of Au particles on a commercial Pt-Ru/C catalyst, followed by heat treatment of the resultant composite catalyst at 125, 175 and 200 degrees C in a N(2) atmosphere. High-resolution transmission electron microscopy (HR-TEM) measurements indicated that the Au nanoparticles were attached to the surface of the Pt-Ru nanoparticles. We found that the electrocatalytic activity and stability of the Au-PtRu/C catalysts for methanol oxidation is better than that of the PtRu/C catalyst. An enhanced stability of the electrocatalyst is observed and attributable to the promotion of CO oxidation by the Au nanoparticles adsorbed onto the Pt-Ru particles, by weakening the adsorption of CO, which can strongly adsorb to and poison Pt catalyst. XPS results show that Au-PtRu/C catalysts with heat treatment lead to surface segregation of Pt metal and an increase in the oxidation state of Ru, which militates against the dissolution of Ru. We additionally find that Au-PtRu/C catalysts heat-treated at 175 degrees C exhibit the highest electrocatalytic stability among the catalysts prepared by heat treatment: this observation is explained as due to the attainment of the highest relative concentration of gold and the highest oxidation state of Ru oxides for the catalyst pretreated at this temperature. (C) 2010 Elsevier Ltd. All rights reserved.
    Relation: ELECTROCHIMICA ACTA
    Appears in Collections:[Department of Chemistry] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML520View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明