English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%)
Visitors : 23067033      Online Users : 708
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/50962

    Title: Detection of swine-origin influenza A (H1N1) viruses using a localized surface plasmon coupled fluorescence fiber-optic biosensor
    Authors: Chang,YF;Wang,SF;Huang,JC;Su,LC;Yao,L;Li,YC;Wu,SC;Chen,YMA;Hsieh,JP;Chou,C
    Contributors: 光電科學與工程學系
    Date: 2010
    Issue Date: 2012-03-27 18:14:00 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Swine-origin influenza A (H1N1) virus (S-OIV) was identified as a new reassortant strain of influenza A virus in April 2009 and led to an influenza pandemic. Accurate and timely diagnoses are crucial for the control of influenza disease. We developed a localized surface plasmon coupled fluorescence fiber-optic biosensor (LSPCF-FOB) which combines a sandwich immunoassay with the LSP technique using antibodies against the hemagglutinin (HA) proteins of S-OIVs. The detection limit of the LSPCF-FOB for recombinant S-OIV H1 protein detection was estimated at 13.9 pg/mL, which is 10(3)-fold better than that of conventional capture ELISA when using the same capture antibodies. For clinical S-OIV isolates measurement, meanwhile, the detection limit of the LSPCF-FOB platform was calculated to be 8.25 x 10(4) copies/mL, compared with 2.06 x 10(6) copies/mL using conventional capture ELISA. Furthermore, in comparison with the influenza A/B rapid test, the detection limit of the LSPCF-FOB for S-OIV was almost 50-fold in PBS solution and 25-fold lower in mimic solution, which used nasal mucosa from healthy donors as the diluent. The findings of this study therefore indicate that the high detection sensitivity and specificity of the LSPCF-FOB make it a potentially effective diagnostic tool for clinical S-OIV infection and this technique has the potential to be applied to the development of other clinical microbe detection platforms. (C) 2010 Elsevier BM. All rights reserved.
    Appears in Collections:[光電科學與工程學系] 期刊論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明