English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%) Visitors : 23272254      Online Users : 606
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR 理學院    數學系       --期刊論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51125

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/51125`

 Title: Calderon-Zygmund operators on product Hardy spaces Authors: Han,YS;Lee,MY;Lin,CC;Lin,YC Contributors: 數學系 Date: 2010 Issue Date: 2012-03-27 18:22:28 (UTC+8) Publisher: 國立中央大學 Abstract: Let T be a product Calderon-Zygmund singular integral introduced by Journe. Using an elegant rectangle atomic decomposition of H(p) (R(n) x R(m)) and Journe's geometric covering lemma, R. Fefferman proved the remarkable H(p)(R(n) x R(m)) - L(p)(R(n) x R(m)) boundedness of T. In this paper we apply vector-valued singular integral, Calderon's identity, Littlewood-Paley theory and the almost orthogonality together with Fefferman's rectangle atomic decomposition and Journe's covering lemma to show that T is bounded on product H(p)(R(n) x R(m)) for max{n/n+epsilon, m/m+epsilon} < p <= 1 if and only if T(1)*(1) = T(2)*(1) = 0, where epsilon is the regularity exponent of the kernel of T. (C) 2009 Elsevier Inc. All rights reserved. Relation: JOURNAL OF FUNCTIONAL ANALYSIS Appears in Collections: [數學系] 期刊論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML440View/Open