中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51133
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47130594      Online Users : 461
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51133


    Title: HIGHER-RANK NUMERICAL RANGES AND DILATIONS
    Authors: Gau,HL;Li,CK;Wu,PY
    Contributors: 數學系
    Keywords: PONCELET CURVES;MATRICES;POLYGONS;UNITARY
    Date: 2010
    Issue Date: 2012-03-27 18:22:51 (UTC+8)
    Publisher: 國立中央大學
    Abstract: For any n-by-n complex matrix A and any k, 1 <= k <= n, let Lambda(k)(A) = {lambda is an element of C : X*AX = lambda I(k) for some n-by-k X satisfying X*X = I(k)) be its rank-k numerical range. It is shown that if A is an n-by-n contraction, then Lambda(k)(A) = boolean AND{Lambda(k)(U) : U is an (n + d(A))-by-(n + d(A)) unitary dilation of A}, where d(A) = rank (I(n) - A* A). This extends and refines previous results of Choi and Li on constrained unitary dilations, and a result of Mirman on S(n)-matrices.
    Relation: JOURNAL OF OPERATOR THEORY
    Appears in Collections:[Department of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML485View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明