中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51185
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47086338      Online Users : 541
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51185


    Title: ALGEBRAIC RELATIONS AMONG PERIODS AND LOGARITHMS OF RANK 2 DRINFELD MODULES
    Authors: Chang,CY;Papanikolas,MA
    Contributors: 數學系
    Keywords: LINEAR INDEPENDENCE;GAMMA-VALUES;TRANSCENDENCE;MOTIVES
    Date: 2011
    Issue Date: 2012-03-27 18:24:21 (UTC+8)
    Publisher: 國立中央大學
    Abstract: For any rank 2 Drinfeld module rho defined over an algebraic function field, we consider its period matrix P(rho), which is analogous to the period matrix of an elliptic curve defined over a number field. Suppose that the characteristic of the finite field F(q) is odd and that rho does not have complex multiplication. We show that the transcendence degree of the field generated by the entries of P(rho) over F(q)(theta) is 4. As a consequence, we show also the algebraic independence of Drinfeld logarithms of algebraic functions which are linearly independent over F(q)(theta).
    Relation: AMERICAN JOURNAL OF MATHEMATICS
    Appears in Collections:[Department of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML740View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明