中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51186
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41643334      Online Users : 1245
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/51186


    Title: Bilinear operators associated with Schrodinger operators
    Authors: Lin,CC;Lin,YC;Liu,HP;Liu,Y
    Contributors: 數學系
    Keywords: REVERSE HOLDER INEQUALITY;POTENTIALS;SPACES
    Date: 2011
    Issue Date: 2012-03-27 18:24:22 (UTC+8)
    Publisher: 國立中央大學
    Abstract: Let L = -Delta + V be a Schrodinger operator in R(d) and H(L)(1)(R(d)) be the Hardy type space associated to L. We investigate the bilinear operators T(+) and T(-) defined by T(+/-)(f, g)(x) = (T(1)f)(x)(T(2)g)(x) +/- (T(2)f)(x)(T(1)g)(x), where T(1) and T(2) are Calderon-Zygmund operators related to L. Under some general conditions, we prove that either T(+) or T(-) is bounded from L(p)(R(d)) x L(q) (R(d)) to H(L)(1)(R(d)) for 1 < p, q < infinity with 1/p + 1/q = 1. Several examples satisfying these conditions are given. We also give a counterexample for which the classical Hardy space estimate fails.
    Relation: STUDIA MATHEMATICA
    Appears in Collections:[Department of Mathematics] journal & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML597View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明