English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42794862      線上人數 : 883
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    NCU Institutional Repository > 理學院 > 數學系 > 期刊論文 >  Item 987654321/51196


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51196


    題名: HIGHER RANK NUMERICAL RANGES OF NORMAL MATRICES
    作者: Gau,HL;Li,CK;Poon,YT;Sze,NS
    貢獻者: 數學系
    關鍵詞: ERROR-CORRECTING CODES
    日期: 2011
    上傳時間: 2012-03-27 18:24:38 (UTC+8)
    出版者: 國立中央大學
    摘要: The higher rank numerical range is closely connected to the construction of quantum error correction code for a noisy quantum channel. It is known that if a normal matrix A is an element of M(n) has eigenvalues a(1), ..., a(n), then its higher rank numerical range Lambda(k)(A) is the intersection of convex polygons with vertices a(j1), ..., a(jn-k+1), where 1 <= j(1) < ... < j(n-k+1) <= n. In this paper, it is shown that the higher rank numerical range of a normal matrix with m distinct eigenvalues can be written as the intersection of no more than max{m, 4} closed half planes. In addition, given a convex polygon P, a construction is given for a normal matrix A is an element of M(n) with minimum n such that Lambda(k)(A) = P. In particular, if P has p vertices, with p >= 3, there is a normal matrix A is an element of M(n) with n <= max {p + k - 1, 2k + 2} such that Lambda(k)(A) = P.
    關聯: SIAM JOURNAL ON MATRIX ANALYSIS AND APPLICATIONS
    顯示於類別:[數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML709檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明