English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 42791172      線上人數 : 1131
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51823


    題名: Adaptive fuzzy approach to function approximation with PSO and RLSE
    作者: Li,CS;Wu,TH
    貢獻者: 資訊管理學系
    關鍵詞: UNIVERSAL APPROXIMATORS;SYSTEMS
    日期: 2011
    上傳時間: 2012-03-27 19:07:06 (UTC+8)
    出版者: 國立中央大學
    摘要: A new adaptive fuzzy approach to function approximation is proposed in the paper. A Takagi-Sugeno (T-S) type fuzzy system is used as the function approximator in the study. The proposed approach uses a hybrid learning method to train the T-S fuzzy system to achieve high accuracy in function approximation. The hybrid learning method combines both the particle swarm optimization (PSO) and the recursive least squares estimator (RLSE) to update the parameters of the fuzzy approximator. The PSO is used to update the premise part of the fuzzy system while the consequent part is updated by the RLSE. The PSO-RLSE learning method is very efficient in learning convergence. The proposed approach is compared to other methods. Three benchmark functions are used for the performance comparison. The proposed approach shows superior performance to compared approaches, in terms of approximation accuracy and learning convergence. (C) 2011 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    顯示於類別:[資訊管理學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML699檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明