中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/51886
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42803680      在线人数 : 1097
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/51886


    题名: Using Google latent semantic distance to extract the most relevant information
    作者: Chen,PI;Lin,SJ;Chu,YC
    贡献者: 資訊管理學系
    关键词: WEB SEARCH;RETRIEVAL;CONTEXT;LENGTH
    日期: 2011
    上传时间: 2012-03-27 19:08:29 (UTC+8)
    出版者: 國立中央大學
    摘要: There have been many studies about how to help users enter more keywords into a search engine to find the most relevant documents or search results. Methods previously reported in the literature require a database to save the user profile, and construct a well-trained model to provide the potential "next keyword" to the user. Because the predictive models are based on the training data, they can only be used in a single knowledge domain. In this paper, we describe a new algorithm called "Google latent semantic distance" (GLSD) and use it to extract the most important sequence of keywords to provide the most relevant search results to the user. Our method utilizes on-line, real-time processing and needs no training data. Thus, it can be used in different knowledge domains. Our experiments show that the GLSD can achieve high accuracy, and we can find out the most relevant information in the top search results in most cases. We believe that this new system can increase users' effectiveness in both reading and writing articles. (c) 2010 Elsevier Ltd. All rights reserved.
    關聯: EXPERT SYSTEMS WITH APPLICATIONS
    显示于类别:[資訊管理學系] 期刊論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML578检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明