中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/53846
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47365547      在线人数 : 489
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/53846


    题名: 模糊系統觀測回授控制器之寬鬆穩定條件;New LMI Formulation for Observed-State Feedback Stabilization
    作者: 卓晉宏;Cho,Chin-hung
    贡献者: 機械工程研究所
    关键词: 觀測回授控制器;寬鬆矩陣變數;二次穩定;波雅定理;模糊系統;線性矩陣不等式;Takagi-Sugeno fuzzy systems;Slack matrices;Linear matrix inequality;Parameter-dependent LMIs;Polya Theorem;Quadratic relaxations
    日期: 2012-07-23
    上传时间: 2012-09-11 18:17:36 (UTC+8)
    出版者: 國立中央大學
    摘要: 本篇論文主要研究連續時間模糊(fuzzy)系統及離散時間模糊(fuzzy)系統的二次穩定寬鬆條件,我們利用波雅定理(P'olya Theorem)的代數性質加上寬鬆矩陣變數(slack matrix variables),再利用激發強度為基礎之多項式排列的控制器與觀測器來做控制與估測之相關分析,利用這些條件來建立一組寬鬆的線性矩陣不等式(LMI),因為上述的這些條件已可以將求解保守性降低不少,但本篇論文還有一個很重大的貢獻,即是將以往加入寬鬆矩陣變數與波雅定理的線性矩陣不等式以多項式矩陣型態來表示,在判斷式子中因加入了寬鬆矩陣變數,如此可應用多項式矩陣型態之特性,將同階數的元素放在矩陣對角線上或同階數之非對角線上作變化,這將會使判斷式保守度更加降低,多項式矩陣型態可由第二章範例中了解其意義,這些改善將會以例子來證明了解其優點。In this thesis, we investigate quadratic relaxation for continuous-time and discreate-time fuzzy systems, which are characterized by parameter-dependent LMIs (PD-LMIs), comprising the algebric property of P'olya Theorem to construct a family of finite-dimensional LMI relaxations with right-hand side slack matrices and matrix-values HPPD function of degree g that release conservatism. Lastly, numerical experiments to illustrate the advantage of relaxations, being less conservative and effective, are provided.
    显示于类别:[機械工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML534检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明