中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61089
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59968555      Online Users : 1005
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/61089


    Title: 一個應用字詞連結度協助文件分群之方法;An Approach to Aid Document Clustering based on Word Connectivity
    Authors: 張巧欣;Chang,Chiao-Hsin
    Contributors: 資訊管理學系
    Keywords: 文件分群;向量空間模型;連結度;字詞群集;Document Clustering;Vector Space Model;Word Connectivity;Keyword Cluster
    Date: 2013-07-16
    Issue Date: 2013-08-22 12:11:38 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 網際網路的發展,資訊量快速成長,資訊過載問題日益嚴重,為了能有效率管理
    龐大的資訊,資料須適當的處理,幫助使用者整理龐大的資訊並加速獲得真正有用的
    資訊。傳統的文件分群主要使用字詞在文件中的權重當向量空間模型的依據,得面臨
    一些挑戰,如:資料量大時,高維度向量稀疏矩陣需要大量計算成本且效能不佳、詞
    彙為獨立構成,無法區分文中詞彙間關聯性、並不是所有詞彙一樣重要。本研究提出
    一套方法,透過分析字詞與字詞間連結度,形成字詞群集,利用字詞群集協助文件分
    群。首先,針對資料集擷取資訊量較多之關鍵字當字詞群集之基礎;接著,依關鍵字
    平均連結度分數加以合併形成字詞群集,用以表達文件進行分群。由實驗結果顯示本
    研究提出之方法能提升分群之效能,更能夠表達詞彙在資料集與詞彙之關係。
    The World Wide Web continues to grow at an amazing speed to bring a quickly growing number of documents. Since information overload is more serious than ever, the development of new methods for managing these information is an important issue. In most document clustering algorithms, documents usually are represented in the vector space model, which consider all dimensions (terms) in similarity measurement. In this vector space model, there are some weaknesses. First, cost much in calculation in high dimension situation. Second, it treats terms as independent and of equal importance. In this paper, we propose a method to aid document clustering. To start with, we analyze degree of word connectivity
    and then, group keywords in to keyword clusters
    finally, all documents were clustered according to the score among the keyword clusters and then choose the highest score keyword cluster for each document. Our experimental results show that the performance of the proposed approach has been improved effectively.
    Appears in Collections:[Graduate Institute of Information Management] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML619View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明