中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61180
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81570/81570 (100%)
造访人次 : 47939810      在线人数 : 479
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/61180


    题名: 二維非線性淺水波方程的Lax-Wendroff差分數值解;Lax-Wendroff Difference Solutions of the 2-D Nonlinear Shallow Water equations
    作者: 吳峙霆;Wu,Chih-Ting
    贡献者: 數學系
    关键词: 淺水波方程;柯氏力;Lax-Wendroff差分法;Runge-Kutta法;算子拆解法;shallow water equations;Coriolis effect;Lax-Wendroff scheme;Runge-Kutta method;operator-splitting method
    日期: 2013-07-29
    上传时间: 2013-08-22 12:14:09 (UTC+8)
    出版者: 國立中央大學
    摘要: 在本文中,我們將考察具柯氏力項的二維非線性淺水波方程有限差分數值解。利用二階Runge-Kutta法與算子拆解法對時間變數進行離散化,我們推導出兩種Lax-Wendroff類型的有限差分數值解法,這兩種方法在時間與空間變數的離散上均能維持二階的精確度。我們將選取反射型的邊界條件及數種不同的初始條件進行一系列的數值模擬實驗。經過大量的數值模擬後,我們發現以Runge-Kutta法為基礎的Lax-Wendroff有限差分數值解似乎具較高的穩定性。
    In this thesis, we will investigate the finite difference schemes for solving the 2-D nonlinear shallow water equations with the Coriolis effect. Based on the second-order Runge-Kutta method and the operator-splitting method for time discretization, we derive two Lax-Wendroff-type finite difference schemes. Both proposed finite difference schemes possess the second-order accuracy in temporal and spatial variables. We will apply the reflective boundary condition with various initial conditions to perform a series of numerical simulations. From the numerical results, we find that the proposed scheme based on the Runge-Kutta method seems having a better stability.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML697检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明