中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/61555
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 83776/83776 (100%)
Visitors : 59458026      Online Users : 1553
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: https://ir.lib.ncu.edu.tw/handle/987654321/61555


    Title: Session-Based Recommendation System for Social Network – Case Study on Tencent Weibo
    Authors: 陳貞伶;Chen,Chen-Ling
    Contributors: 資訊工程學系
    Keywords: 推薦系統;矩陣分解;協同過濾
    Date: 2013-08-08
    Issue Date: 2013-10-08 15:22:08 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 騰訊微博是中國最大的微博網站之一,騰訊微博上超過200萬的註冊用戶,每天產生超過40萬筆的消息。為了避免使用者處於資訊過載的狀況,因而,騰訊微博推薦使用者可能會感到有趣的項目。本篇論文為預測使用者是否會點擊跟隨騰訊微博所推薦的項目。論文分為兩大部分:第一部分為判斷使用者的喜好,第二部分則是判斷使用者是否專注於推薦項目上。判斷使用者喜好的部分,我們建立了多種Model based Collaborative Filtering模型以及Content based的模型來模擬使用者的喜好。第二部分則以資料的時間序列來建立Occupied model以模擬使用者處於何種狀態。最後,合併Occupied model與使用者喜好模型為最後的預測模型。在本篇論文我們以Session為單位來計算模型的Hamming loss,使用者喜好模型與Occupied model合併後的Hamming loss都會明顯下降,並達到最低的Hamming loss 0.13。
    Tencent Weibo is one of the largest micro-blogging websites in China. There are more than 200 million registered users on Tencent Weibo, generating over 40 million messages each day. Recommending appealing items to users is a mechanism to reduce the risk of information overload. The task of this paper is to predict whether or not a user will follow an item that has been recommended to the user by Tencent Weibo. The paper contains two parts: predicting users’ interests and distinguish whether the user is busy or available to browse recommended items. We apply several models based collaborative filtering as well as content-based filtering to capture users’ interests. Besides, we built an occupied model to distinguish users’ state and combined with recommendations methods as the final result. In the paper, we used session-based hamming loss as performance measure. The hamming loss of recommendation methods were greatly reduced (40%) above with occupied model from 0.187 to 0.13.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML781View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明