本論文主要在研發一使用於電動載具上的驅動系統,而馬達則使用內藏式永磁同步馬達做為驅動,主因是其具有高功率密度、高效率、高轉矩慣量以及相當寬廣的轉速操作範圍。相較於目前兩輪電動載具的市場上均使用六步方波控制的輪轂馬達來說,由於永磁馬達使用弦波驅動,因此其轉矩輸出的順滑度遠比輪轂馬達來得好,而此特性也可以媲美使用內燃機為驅動方式的機車,使用者不需適應電動車的操控方式即可騎乘。另外,為了符合電動車高轉速的需求以及成本考量,因此在不使用無段變速器來提升行車速度的條件下,須將內藏式永磁同步馬達操作於弱磁區,使其符合高速需求。本文在弱磁區使用每安培電流最大轉矩控制法則,針對該馬達建立其弱磁表,然後以微控制器SH7137實作出此驅動器,以驗證全速段均可穩健操作。 This thesis mainly used in the development of an electric vehicle on the drive system, and the motor is used as an interior permanent magnet synchronous motor drive, mainly due to its high power density, high efficiency, high torque inertia and a fairly broad speed operating range. Compared to the two electric vehicles currently on the market are using the six-step square wave control wheel stock motor, because the permanent magnet motor with sinusoidal drive, so the torque output of the smoothness of shares than the wheel motors to well, and this feature can also use an internal combustion engine-driven way comparable locomotives, users do not need to adapt to the electric car ride control methods. In order to meet the demand for electric cars high speed and cost considerations, the CVT is not in use to improve the speed of traffic conditions, the interior permanent magnet synchronous motor is required to operate in the field weakening region, to meet high requirements. In this paper, using the MTPA weakening control strategy for the motor to build its weak magnetic table, and then to implement a microcontroller SH7137 make this drive to verify that the full segment can operate stably.