English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23077064      Online Users : 347
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/61652

    Title: 視覺空間注意力於視覺誘發電位調變之大腦人機介面;The Modulation Effect of VisuoSpatial Attention on Visual Evoked Potential and its Application to Brain Computer Interface
    Authors: 徐詠韻;Hsu,Yung-Yun
    Contributors: 電機工程學系
    Keywords: 閃爍視覺誘發電位;注意力;腦電波 訊號;腦波人機介面;FVEP;Visuospatial Attention;EEG;BCI
    Date: 2013-08-23
    Issue Date: 2013-10-08 15:24:45 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 視覺誘發電位(Visual evoked potential, VEP)被廣泛應用於臨床視覺檢查、
    指令。視覺腦波人機介面(VEP-based BCI) 透過非侵入式腦波訊號
    (Electroencephalogram, EEG)的辨識與擷取,可以讓使用者與外界互動,並
    (dependent system),使用者的眼睛必須注視於閃光刺激光源,才能進行系統
    因此,本研究致力於發展一種不具依賴性(independent system)的視覺誘
    本研究所使用的閃光方式為閃爍視覺誘發電位(Flash Visual Evoked
    Potential, FVEP),藉由人腦視覺腦波對於閃光刺激的亮滅具有時間鎖定與相
    電位的特徵峰值P2 與N2,並計算兩波峰之差值Amponset,經過比較振幅大
    Visual evoked potential (VEP) has been widely used in clinical visual
    diagnoses and has been utilized for the application of brain computer interface.
    By encoding the temporal sequeces of visual stimuli with distinct frequencies or
    phases, brain waves induced from different visual stimuli can be recognized
    using classifiers, and the recognized brain waves are subsequently used for
    delivering control commands. Visual evoked potential – based brain computer
    interface (VEP-based BCI) enables users to interact with external environments
    independent of other people’s help or peripheral neuralmuscular activities. In
    addition, VEP-based BCI has the advantages of high information transfer rate
    and less training effort which has drawn attention from serveral BCI research
    teams. However, current VEP-based BCI systems are dependent system. Users’
    eyes should always gaze at their intended visual stimuli which results in
    limitation to BCI applications.
    This thesis aims to develop a new independent VEP-based BCI system. By
    studying the effects of visuospatial attention on the modulation of VEP
    amplitudes. User’s attended targets can be distinguished from other targets, and
    the recognized target can then be used to control external devices. Owing to the
    time-locked and phase-locked characteristics of VEP, the present study utilized
    flash visual evoked potential (FVEP) to design our system. Two visual stimuli
    located at left and right visual fields were driven by distinct randomly generated
    sequences, and VEP induced from visual stimuli at left and right visual fields
    were detected separately by means of a simply averaging process. The amplitude
    difference between P2 and N2 peaks, denoted as AMPonset, was calculated in
    each VEP. Therefore, the visuospatial attention effect on user’s attended targets
    can then be discussed. The research results of this study can be applied to design
    independent VEP-based BCI system in future applications.
    Appears in Collections:[電機工程研究所] 博碩士論文

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明