中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62342
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41667740      線上人數 : 1646
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62342


    題名: 含過渡金屬中心雜環結構之中間相材料;Metallomesogens Derived from Heterocycles
    作者: 賴重光
    貢獻者: 國立中央大學化學系
    關鍵詞: 化學
    日期: 2012-12-01
    上傳時間: 2014-03-17 11:30:34 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;This proposal continues our original research in metallomesogen derived from heterocycles. This research is to propose a strategic approach for the formation of novel metallomesogenic materials with superstructures, which are expected to exhibit liquid crystalline behavior, magnetic and related electro-optical properties. These materials are associated with unique molecular assemblies in which metal centers as core group have geometries of square planar or pyramid with a coordination number of 4, 5 and 6. Four different types of heterocyclic structures are applied to generate the metallomesogenic materials; (a) pyrazoles (b) benzoxazoles (c), 1,2,4-triazzoles, and (d) 1,3,4-oxadiazes. A variety of transition metals will be incorporated to induce the microscopic dipole, and the choice of the metals incorporated will be generally dependent on the coordination geometry, oxidation state or electronic state of the metals. Metal complexes incorporated with a twisted square planar (Cu2+), square planar structure (Ni2+/Pd2+) are often easier to form mesophases, however, complexes with a tetrahedron (Co2+/Zn2+) is not easy to form a mesophase due to unfavorable packing. A coordination number of 4 (Cu2+/Ni2+/Zn2+/Pd2+), 5 (VO2+/TiO2+/Mn2+), and 6 (Cr/3+Al/3+Ru3+/Fe3+) will be applied to generate the metal complexes. Occasionally, complexes with a CN = 3 (Cu1+/Ag1+) might be also possible. A non centrosymmetric structure and the large resulting molecular dipoles are prerequisites in order to give rise to large bulk macroscopic polarization. The ability to reorient the polarization with electric field applied and to have this polarization persist after the field is removed will make these materials polar ordering. A major distinction between metallomesogens and organic mesogens is their greater tendency to exhibit intermolecular dative coordination in the mesophase, which makes these materials attractive candidates for poling into acentric states. In these systems a lower symmetry is promoted at the molecular level by the self-ordering properties of liquid crystalline materials, the complementary shape of the molecules and head-to-tail ordering imposed by the linear chain superstructures, and these methods are also widely employed to facilitate the formation of these mesogenic materials. Self-organizing properties of liquid crystalline materials, the geometric shape of the molecules, and weak intermolecular dative coordination will be employed to facilitate the formation of the proposed materials. Preparation, characterization and mesomorphic properties of these poly-metallic compounds will be studied in the initial stage, and future research will be focused on the physical studies.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    顯示於類別:[化學學系] 研究計畫

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML376檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明