中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/62396
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 81025/81025 (100%)
造访人次 : 45986216      在线人数 : 603
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/62396


    题名: 修正牛頓力學之研究;A Study on Modified Newtonian Gravity as an Alternative to Dark Matter
    作者: 高仲明
    贡献者: 國立中央大學天文研究所
    关键词: 物理
    日期: 2012-12-01
    上传时间: 2014-03-17 11:31:52 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Abstract: This proposal is a study on the MOdified Newtonian Dynamics (MOND) as an alternative to dark matter. It contains two parts. In the first part, we want to apply relativistic version of MOND to gravitational lensing, and in the second part we want to study the structure of a stellar system and its destruction by tidal interaction. The first one mainly uses observational data to constraint different models, while the second one relies on simulations. Discrepancy between observed acceleration in many astrophysical objects and Newtonian dynamics (or general relativity) invokes different interpretations. Basically, both dark matter dynamics and MOND can be considered as an algorithm to interpret the observational data. MOND proposes that at small acceleration the interaction is stronger than Newtonian dynamics. In our opinion, MOND is far more successful than dark matter in galaxy scales. As in other theories, MOND has some free parameters and functions. The most important ones are the small acceleration parameter and the interpolation function (which connects Newtonian regime and MONDian regime). Small acceleration parameter can be fixed in deep MOND regime (i.e., the acceleration is very small), such as rotation curve of spiral galaxies. To probe the interpolation function, one needs to go to intermediate MOND regime. We find that strong gravitational lensing often happens in intermediate MOND regime. We propose to use TeVeS (Tensor-Vector-Scalar gravity theory, a relativistic version of MOND) to study strong lensing systems. We are interested in elliptical galaxies acting as lenses, in particular, those with dispersion velocity measurement. Under the hypothesis of a mass fundamental plane among elliptical galaxies, we can constraint the interpolation function. We are also keen on Einstein rings as they provide a unique scale for us to discuss those interpolation functions in the intermediate MOND regime. Moreover, we would like to work on microlensing and weak lensing in MOND. A byproduct of this part is the distribution of the (baryonic) mass-to-light ratio of elliptical galaxies. The structure of a stellar system and its destruction during an encounter with a larger object should be different from Newtonian case. MOND can be interpreted as a modified gravity theory where the potential is described by a modified Poisson equation. We propose to develop an N-body code which incorporates MOND correctly. The code will comprise two parts, the potential solver and the N-body part. We would like to construct some models of polytropes and study the detail dynamics of tidal disruption in MOND. We would like to see if MOND can explain the apparent scarcity of dwarf galaxies in our neighbourhood.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[天文研究所] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML415检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明