English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 78852/78852 (100%)
造访人次 : 36134952      在线人数 : 929
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/63044


    题名: p型半導體之量子井及量子線的熱電效應;Thermoelectric Properties of P Type Semiconductor Quantum Wells and Wires
    作者: 郭明庭
    贡献者: 國立中央大學電機工程學系
    关键词: 物理;電子電機工程
    日期: 2012-12-01
    上传时间: 2014-03-17 14:17:42 (UTC+8)
    出版者: 行政院國家科學委員會
    摘要: 研究期間:10108~10207;Due to energy and environment issues, it becomes important to understand the thermal properties of materials. Recently many efforts are to seek efficient thermoelectric materials because there exist potential applications of solid state thermal devices. Several methods were proposed to realize the enhancement of figure of merit (ZT) , one of them is to reduce system dimension such as quantum wells, quantum wires, and quantum dots. However, most of efforts have focused on the electron carriers. To realize thermoelectric devices, we need to consider not only the n-type semiconductors, but also p-type semiconductors for the application of coolers that require the condition of electrically in series and thermally in parallel. As a consequence, it is crucial to clarify the thermoelectric properties of semiconductor with hole carriers in the realization of thermoelectric devices. For electron carriers, parabolic band is employed to describe the relationship between energy and momentum. Nevertheless, a much more complicated band structure beyond parabolic band should be considered for holes due to its p orbital and spin-orbital interaction. In particular, there also exist the strain effect arising from the junction interface to modify the hole p-orbital band structure which yields the flat band with singularity density of states. In the first year, we would like to study thermoelectric properties of a single quantum well system with p-type doping. In the second year, we will consider quantum wires, and then finally . going to study quantum dot superlattices. Hole electrical conductivity, Seebeck coefficient, and hole thermal conductivity are calculated by Boltzmann equation. Lattice thermal conductivity is calculated two fluid model.
    關聯: 財團法人國家實驗研究院科技政策研究與資訊中心
    显示于类别:[電機工程學系] 研究計畫

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML401检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明