中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/6574
English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 43652113      線上人數 : 910
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/6574


    題名: 運用時間序列微陣列資料來預測調控基因;Predicting Regulating Genes using Time-course Microarray Data
    作者: 謝佩君;Pei-Chun Hsieh
    貢獻者: 系統生物與生物資訊研究所
    關鍵詞: 時間序列微陣列;調控基因;regulating gene;time-course microarray
    日期: 2009-07-02
    上傳時間: 2009-09-22 10:22:46 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 我們用兩組酵母菌和兩組細菌的微陣列數據來驗證以及比較三個用來研究基因調控的動力模型―一階、二階和平均。對於每一個受關注的被調控基因,我們以最高事後機率找出最有可能的調控基因,接著利用EchoBASE、GeneDB以及Saccharomyces Genome Database等資料庫來查對那些最高事後機率的基因,並認定其中哪些被註釋為轉錄因子。我們將最大化機率的基因分成兩組-編碼轉錄因子與編碼非轉錄因子,再以它們的ROC線下面積(AUC)來量化模型的表現。我們發現二階模型在驗證中的整體表現最佳,其中一個AUC高達100%。因此在本研究中,我們認為二階微分模型預測轉錄因子的能力會優於其他兩種動力模型。 On two yeast datasets and two bacteria datasets, we validate and compare three kinetic models – first-order, second-order and averaged – for studying causal relationships between genes. For each regulated gene of interest, we identify the gene with the highest posterior probability of being its dominant regulating gene. We then check the annotation of those genes with the highest posterior probability(probability-maximizing genes)in EchoBASE, GeneDB, and in the Saccharomyces Genome Database and note which among them are putative transcription factors. To quantify performance, we estimate the area under the receiver operating characteristic curve (AUC) between the probability-maximizing genes that encode putative transcription factors and those that do not. We find the second-order model performs well in validation. One of its AUC estimates is 100%, reflecting the case in which the only putative transcription factor has a higher posterior probability of being the dominant regulator of a gene of interest than any of the other 42 genes. Based on this study we suggest that the second-order model is better than others kinetic models on predicting transcription factors.
    顯示於類別:[系統生物與生物資訊研究所] 博碩士論文

    文件中的檔案:

    檔案 大小格式瀏覽次數


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明