English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41627774      線上人數 : 2434
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/67502


    題名: Pseudo Spectral Method for Holographic Josephson Junction
    作者: 鄭俊祥;Tin,Jun-Siang
    貢獻者: 物理學系
    關鍵詞: 波譜法;擬譜法;AdS/CFT對應
    日期: 2015-05-07
    上傳時間: 2015-07-30 19:58:49 (UTC+8)
    出版者: 國立中央大學
    摘要: 在解愛因斯坦方程式時,數值方法是一個重要的技術,因為在大多數情況下,愛因 斯坦方程的解析解是無法得到的。當我們用數值方法解愛因斯坦方程時,方程式 的雙曲特性以及它的非線性是兩個我們必須克服的主要問題。非線性常會讓數值 方法的捨去誤差(truncated error)增大到無法接受的地步。然而,如果捨去誤差 足夠小的話,這個數值解在有限時間內還是準確的。在眾多數值方法中,當我們 要獲得高準確度的解時,波譜法(spectral method)常常是最好的工具。在這篇論 文中,我們運用特別一類稱為擬譜法(pseudo spectral method)來解 holographic Josephson junction 問題。我們考慮的這個問題是不隨時間改變的,因此雙曲特性 並不在我們的討論範圍內。;Numerical method has been an important technique in solving the Einstein equation, because in most cases, the analytical solution is not known. When solving the Einstein equation numerically, hyperbolic property and non-linearity are two big problems we have to overcome. Non-linearity will make the truncated error in numerical methods grows to an unacceptable value. However, if the truncated error is small enough, the solutions are still reliable in finite time. Among many different approaches of numerical methods, spectral methods are often the best tool when the problems have to be solved in high accuracy. In this thesis, we apply pseudo spectral method, which is a special class of spectral method, to solve a holographic Josephson junction problem. The problem we consider is time independent, so the hyperbolic property is not our concern.
    顯示於類別:[物理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML474檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明