MOCVD為發光二極體、高頻元件、功率元件等重要電子元件的主要製程設備,MOCVD半導體設備機台可以劃分為五大項目:加熱系統、控制系統、進氣系統、廢氣處理系統、真空反應腔體,其中加熱系統提供製程反應中所需要的製程溫度與能量,其溫度均勻度影響薄膜品質甚劇,而溫度均勻度主要來自於發熱源形狀以及間距的設計,有鑑於此,本研究以學生自身搭建一MOCVD之高溫加熱系統進行研究,且為使承載盤表面溫度分布均勻,特以數值軟體針對以下參數進行分析 (1)加熱器之厚度探討 (2)加熱器之截面積與電阻值關係 (3)加熱器線圈間距分析 (4)最佳化加熱器實驗 (5)反射擋板與二區段加熱器 比對數值分析與實驗結果,可進行加熱器電熱功率與加熱器線圈形狀設計,並對承載盤表面溫度分布進行優化,電熱功率數值分析具有95%可信度,承載盤表面溫度誤差百分比僅11.2%。反射擋板與二區段加熱器可提升加熱器電熱功率使用效率,並且彌補承載盤邊際效應造成之表面溫度差,盤面溫度標準差可達5.8℃,大幅度改盤面溫度分布。 ;A semiconductor equipment usually can be divided into five sub-systems, (a) heating system, (b) exhausting system, (c) injecting system, (d) control system and (e) vacuum chamber. Since metal organic chemical vapor deposition (MOCVD) requires a high temperature process to deposit epitaxy thin film, the uniformity is a key process indicator and is determined by the distribution of susceptor temperature. Thus, the research focuses on the heating system for a MOCVD vacuum reactor. The geometry of the heater determine the uniformity of the surface temperature. By setting the vacuum reactor and simulating the heating system, the results assist us to get the distribution of surface temperature be more uniform. The thickness of heater, the resistance, the distance between coil turns and turns, the optimization of heater, the reflectors and the two-zone heating are elaborated in the research. To compare with the experiments and simulations, the results support the geometry design and power of the heater. The optimum make the susceptor temperature more uniform. The confidence level of the simulated results is 95%, and the error of the susceptor temperature is 11.2%. The reflectors and the two-zone heating improve the efficiency of heater. The difference and standard deviation of surface temperature would be decrease. The research makes the susceptor temperature be more uniform, and improve the design capability of semiconductor components.