我們建立一套超高真空系統,其中包含三項實驗技術: 分子束、反射式紅外光譜吸收儀、熱脫附質譜術,這些實驗技術在表面科學上是有用的工具可以研究催化反應過程。我們的設計包括:主腔體、分子束的反應腔體、紅外光路徑腔體。 除了系統架設外,我們利用此系統研究甲醇在鉑單晶上實際時間上的分解反應,在溫度500 K及甲醇曝量在高氣壓狀態(2×10-7- 4×10-7 托耳),利用我們的熱脫附質譜圖與之前Stuve等人所做的文獻比較之下,我們推測因甲醇分解所產生的一氧化碳比較容易累積在鉑表面上而造成一氧化碳的脫附量增加,而存留在表面的一氧化碳也會使甲醇分解效率降低。另外我們利用氧分子束與甲醇分解反應在溫度480 K下作用,發現氧分子不會與鉑反應分解形成氧原子。 ;We built an ultrahigh vacuum system with molecular beam, infrared reflection absorption spectroscopy (IRAS), and temperature programmed desorption (TPD). These techniques are useful tools to study reaction dynamics in surface science. Our designs include a main chamber, a QMS chamber for molecular beam, and IR chambers. We investigated the real-time catalyzed methanol decomposition on single crystal Pt(100) surface. At 500 K and at high pressure (2×10-7 - 4×10-7 Torr), we compare our TPD results to the previous study by Stuve et al. which suggests that the produced CO accumulated on Pt(100) surface in the reactions. The accumulated CO continued to desorb during the exposure to methanol, leading to increase of desorbing CO. The remained CO decreases the probability of methanol decomposition. The O2 molecules refuse to dissociate into O atoms on Pt (100) at 480 K according to the experiments of methanol decomposition with O2 molecular beams.