English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41638233      線上人數 : 1714
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/68867


    題名: 應用多元衛星光學影像於懸浮沉積物之監測 -以台灣卑南溪河口為例;Application of multi-satellite optical image to suspended sediments monitoring - Case study of Pinan River estuary in Taiwan
    作者: 王禹翔;Wang,Yu-shiang
    貢獻者: 遙測科技碩士學位學程
    關鍵詞: 懸浮沉積物濃度;光學衛星;卑南溪;大氣校正;高濃度重力流;suspended sediment concentration;optical satellites;Pinan River;atmospheric correction;hyperpycnal flow
    日期: 2015-07-29
    上傳時間: 2015-09-23 14:45:38 (UTC+8)
    出版者: 國立中央大學
    摘要: 近年來光學衛星被廣泛用來做大面積的環境監測,其中懸浮沉積物濃度(SSC)變化為眾多監測項目中相當重要的目標之一,在光學影像中懸浮沉積物的濃度越高,通常反映出越高的光譜反射率。有鑑於複雜的環境變因,前人研究大多由衛星影像獲取水體反射率,配合水樣採集的濃度紀錄,建立區域性的預測模型。卑南溪位於台灣東南部,發源於中央山脈,豐沛的颱風降雨與陡峭短促的河道,造就卑南溪成為台灣重要的沉積物輸出河。本研究彙整水利署與環保署長期的懸浮沉積物濃度監測紀錄,以及多顆衛星(FORMOSAT-2、SPOT-4、SPOT-5、SPOT-6)於台灣上空定期拍攝的影像資料。從中篩選2005~2013年53筆同期的實測資料與衛星影像,探討水體反射率與實測濃度的變化關係,並於大氣校正工作後得到最佳的濃度預測模型,接著再以2014年的實測資料進行預測模型的分析與驗證,並發現多元回歸分析有較準確的預測結果,R2為0.9766,預測斜率為1.0431。本研究後段以2011年為例,利用預測模型成功提升懸浮沉積物濃度監控之頻率與擴散分布之細節,整合全年的水文資來分析濃度變化的控制因素,並多次監測出懸浮沉積物濃度已達觸發高濃度重力流之門檻。透過水體反射率標準差分析可能的觀測誤差來源發現,預測結果易受環境影響,特別是河道乾濕季的變化以及海面波浪的干擾,可能都是觀測誤差的主因。若未來能針對此誤差因素進行改善,相信對懸浮沉積物濃度之監測可提供更準確的預測結果,並大幅提升監測頻率與範圍,進而彌補傳統定點人力監測的不足。;Suspended sediment concentration (SSC) is an important indicator of sediment output. Recently, some SSC predictions had been carried out by using optical satellites imagery in different areas. In general, the more suspension sediment in water can directly reflect the higher reflectance of solar radiation. Therefore, most studies developed unique relationships by relating field measurements of SSC to reflectance data from satellite imagery. In this study, we focused on the Pinan River estuary which is born from the largest river in eastern Taiwan. In order to identify an appropriate SSC-reflectance model, we combined our optical satellite images, which included FORMOSAT-2, SPOT-4, SPOT-5 and SPOT-6, with the field data from 2005 to 2013. After doing atmospheric correction, we got the best model with Multiple Regression analysis method. The important thing is that the method has more accurate in predicting SSC, after proving our model with the latest field data in 2014. In the final part, we used the model to resupply the SSC data in 2011, and discussed the characteristics of sediments output with rainfall and discharge. Actually, it is useful for us to replace those stations to get the SSC distribution outside the estuary. And, there are several hyperpycnal flow events occurred at the bottom of the estuary, while the SSC exceeding the threshold (40,000ppm). We also discussed the characteristic of spectral and the source of errors from environment effects. While getting more ways to reduce those noises, we could have better model to predict the SSC. At the same time, it also could enhance the frequency and range of monitoring, and make up for a lack of manual monitoring.
    顯示於類別:[遙測科技碩士學位學程] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML728檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明