中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/69485
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 81570/81570 (100%)
Visitors : 47273658      Online Users : 433
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/69485


    Title: 直線偵測硬體加速器設計與實作;Design and Implementation of Hardware Accelerator for Line Detection
    Authors: 郭旻灝;GUO,MIN-HAO
    Contributors: 資訊工程學系
    Keywords: 邊緣偵測;硬體加速器;直線偵測;Hough Transform;Edge Detection;FPGA
    Date: 2016-01-27
    Issue Date: 2016-03-17 20:45:03 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於直線偵測演算法需要一連串循序、復雜的影像處理流程,因此在軟體實現的時候需要利用高效能的處理器來降低計算的處理時間。本論文利用MIAT(本實驗室)系統方法論,設計一個平行化運算的直線偵測硬體加速器。此加速器架構包含一個上層的管線化控制器,用來控制底下Canny邊緣偵測模組以及Hough Transform模組的運作,利用邊緣偵測模組得到的影像邊緣資訊進行Hough Transform以提高直線偵測結果的準確度,再利用管線化控制的方式來提升各模組的效能。本研究根據Canny的流程使用高斯模糊處理降低雜訊造成的錯誤邊緣偵測,並且在不影響直線偵測結果的前提下,減少運算次數及資源使用量,用以提升系統效能,相較於Xu與Chen的方式分別降低了84%與74%的電路資源使用。利用方法論生成之硬體功能電路,具備好的分散式架構以及可擴充性,使其更容易應用在各式嵌入式系統中。;Due to line detection algorithm require a series of sequential complex image processing. Therefore, implementing line detection algorithm with software usually needs high-efficiency processor to reduce the processing time. In this paper, MIAT system design methodology is used to design a parallel calculating line detection hardware accelerators. Architecture of the accelerator contains a top layer pipeline controller to control Canny edge detection module and Hough Transform module below. Hough Transform module use the information from edge detection module to enhance accuracy. And pipeline control is used to improve efficacy of each module. According to Canny’s method we used Gaussian blur processing to reduce wrong edge detection cause by noise. In the case does not affect the line detection result we reducing the number of operations and the amount of resources to Enhance system performance. Compared to Chen’s research and Xu’ research our method reduce 84% and 74% circuit resource. Hardware circuits generate by methodology, with good distributed architecture and scalability, making it easier to use in a variety of embedded systems.
    Appears in Collections:[Graduate Institute of Computer Science and Information Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML294View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明