現今III-V族太陽能電池由於成本昂貴,因此應用上常使用小面積的太陽能電池搭配集光器產生高效率的電能。然而目前市面上的集光器,大多只著重於高效率的匯聚太陽光,但卻忽略了太陽光在匯聚到太陽能電池上後,能量分佈不均的現象,而其可能會導致某處光電轉換效果不彰,抑或是會有過熱的現象。 故在本篇論文中,我們對於現行的III-V族太陽能電池內,設計一個搭配集光器的二次光學元件,利用光學模擬找出在高倍率集光下擁有高傳輸效率和能量均勻化分佈之最佳化設計,並透過實驗量測來探討二次光學元件之可行性。 由於折射式的集光器比反射式的對角度和色散有更高的容忍度,因此我們設計搭配折射式集光器的二次光學元件為楔形的光管。透過此一楔形的光管可容忍集光器上各種不同角度的入射光,用來將太陽光反射到太陽能電池上不同的位置,以達到均勻化分佈的效果。目前在900倍集光器下,理想的光學傳輸效率約可以達到92%左右,但由於經過二次光學元件後,光的反射與表面散射後會降低整體光學系統的效率。因此為了減少太陽光入射光能量的損失,二次光學元件的最佳化設計是非常重要的。我們經由ASAP光學模擬後可知,經過二次光學元件後的理想傳輸效率約達91%以上,且在太陽能電池接收面上,也可達到均勻化分佈之效果。 在實驗量測部分,我們利用太陽能模擬器產生固定強度之光源,經過設計製作出的900倍太陽光接收模組,對太陽光經過二次光學元件後的光斑作廣域均勻度量測。由量測結果看出我們所設計的二次光學元件其傳輸效率可達90.3%,且經過二次光學元件後光斑的均勻度為70%以上,並增加容忍偏移追蹤精度, 以提升整體太陽光接收模組的光學效率。 Optics is commonly integrated into concentration photovoltaic technology for the cost reduction of III-V solar cell. However, the concentration mechanism will lead to the non-uniformity of solar energy on the cell. In this study, we developed a tunnel-shaped Secondary Optical Element (SOE) to homogenize the concentrating energy. Such design is applied to evaluate the 900x system with 10mm x10mm cell size. Geometrical shape of SOE is optimized by means of ASAP simulation tool. We can achieve the beam uniformity as high as 70%. Optical transmission measurement shows 90.3% efficiency that is very consistent with the simulated result of 91%. The acceptance angle is improved as well with the implementation of SOE.