English  |  正體中文  |  简体中文  |  Items with full text/Total items : 78852/78852 (100%)
Visitors : 36537006      Online Users : 491
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/74082


    Title: 指南針和牛蛙心臓混沌動力學控制之研究;Controlling Chaotic Dynamics in a Compass and Cardiac Tissues of a Frog
    Authors: 柯佩蓮;Keprin, Nurra
    Contributors: 生物物理研究所
    Keywords: 牛蛙心臟;混沌指南針;心跳強弱交替;回饋控制;Frog′s heart;Chaotic Compass;Alternans;Feedback control
    Date: 2017-07-31
    Issue Date: 2017-10-27 13:07:44 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 物理及生物的非線性系統在週期性刺激下,會產生混沌行為,此混沌行為可透過外界控制以避免系統產生不規則行為。在這篇論文當中,我們運用最近提出的回饋控制方法¬—T±ε(先前用來降低大鼠心跳強弱交替的現象[24]),來控制生物與物理系統,分別為控制牛蛙心臟組織的跳動,與指南針的轉動。在兩個系統中,我們皆成功的抑制系統倍週期現象。對於心臟組織,控制方法為T±ε,也就是刺激周期為一固定常數T外加微小回饋擾動±ε;而對於指南針,回饋系統為電壓,稱為A±ε,也就是刺激為一固定電壓A外加微小回饋擾動±ε。在指南針系統,ε值必須大於一臨界值才能有效的控制倍週期現象。更進一步,利用A±ε 的控制方法,我們發現高週期的狀態可被控制到低週期或是混沌狀態,又或是非週期狀態可被控制成週期狀態。最後,我們利用數值遞迴映射(單峰映射與心臟復位映射)驗證這些結果,並以微分方程描述此非線性系統。;Chaotic behaviors exist naturally in both physical and biological nonlinear systems
    when they are driven periodically. These chaotic behaviors can be undesirable and control
    is needed for the external drive to avoid irregular behaviors in these systems. We apply a
    recently proposed feedback control method, known as T ± ε (developed for the suppression
    of alternans in the hearts of rats [24]), to control the beating of the cardiac tissues of a bull
    frog’s heart and the motion of a compass when they are driven externally by a periodic
    signal with period T. In both cases, we suppress successfully the period doubling dynamics
    of both systems. For the cardiac tissues, the control is the same as the T ± ε with the small
    feedback perturbations on the driving period. However, for the compass, small feedback
    perturbations are applied to the driving voltage A2 and we call this A ± ε method. In
    this later case, there seem to be a critical epsilon such that suppression of period doubling
    can be effective only when epsilon is larger than a critical value. Furthermore, by using
    this A ± ε control method for the periodically driven compass, we find that high periods
    states can be controlled to low periods states and even chaotic or non-periodic states can
    be tamed to periodic states. These results are also verified numerically by using iterated
    maps (Logistic Map and Cardiac Restitution Map) and a system differential equation to
    describe these nonlinear systems.
    Appears in Collections:[生物物理研究所 ] 博碩士論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML633View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明