English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41084894      線上人數 : 628
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/74279


    題名: 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
    作者: 宋國豪;Song, Guo-Hao
    貢獻者: 物理學系
    關鍵詞: 古柏電子對;超導體;石墨烯
    日期: 2017-07-25
    上傳時間: 2017-10-27 13:41:35 (UTC+8)
    出版者: 國立中央大學
    摘要: 本研究製作雙局部閘極石墨烯/超導體/石墨烯元件,主要針對超導體與石墨烯界面的古柏電子對分離(Cooper Pair Splitting,CPS)傳輸效應進行探討。古柏電子對是超導體中超導能隙內的主要電荷載子,由兩個不同自旋方向的電子所形成的量子糾纏態,當一般金屬(N)與超導體(S)形成NSN元件時,古柏電子對其離開超導體的二個電子可分別傳向兩個不同的一般金屬,此電荷傳輸過程稱為CPS,亦稱為交叉式安德烈夫反射(Crossed Andreev Reflection,CAR)。我們使用石墨烯當作古柏電子對分離的二個通道,鋁作為超導金屬,透過兩個不同位置的下閘極調控二個石墨烯通道,將其中一個石墨烯調控成主要電荷載子為電洞(p型),另一個調控成主要電荷載子為電子(n型),期望當元件形成pSn元件時,能提升古柏電子對分離發生的機率。我們製作了兩種不同結構的元件,分別是相連式石墨烯元件與分離式石墨烯元件,並且成功利用下閘極調控對應位置的石墨烯載子型態與濃度,使用非局域電壓量測法與電流-電流相關性量測法來觀測古柏電子對分離現象,此外也改變元件溫度以及對元件施加磁場驗證超導性質,在我們的測量中並沒有看到古柏電子對分離現象,但觀測到另一個NSN元件中會發生的效應,彈性共同穿隧(Elastic Cotunneling,EC)。;We fabricated the graphene/superconductor/graphene device with two local gates, and mainly studied the Cooper pair splitting (CPS) in the system. The Cooper pair is a quantum entangled pair which consisted of two electrons with opposite spin direction. It is the major carrier in the superconducting energy gap of the superconductors. When two normal metals (N) and a superconductor (S) form an NSN device, the two electrons of a Cooper pair can leave superconductor and transport to two normal metals respectively. This transfer process called CPS, also known as crossed Andreev reflection, CAR. We used graphene as the two channels for CPS, and aluminum as the superconductor. Two local gates can tune carrier type and carrier concentration of the two graphene channels individually. We tuned one of the graphene channels as n-type whose major carrier is electron, and the other graphene channel as p-type whose major carrier is hole. And we expect this nSp configuration can promote the efficiency of CPS.
    We fabricated two kinds of devices with different structure. One is a channel connected device: the two graphene channels are connected and the other is a channel separated device: the two graphene channels are separate. We successfully fabricate local gates to tune the major carrier type and the carrier concentration. Nonlocal voltage measurement and current-current correlation measurement are used for observe CPS. We verified superconductivity by changing the temperature and adding external magnetic field. But in the two different types of devices, we did not observe the CPS in our work. We only observed the elastic cotunneling (EC) which is another effect of the NSN devices.
    顯示於類別:[物理研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML390檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明