English  |  正體中文  |  简体中文  |  Items with full text/Total items : 70585/70585 (100%) Visitors : 23087079      Online Users : 318
 Scope All of NCUIR 理學院    數學研究所       --博碩士論文 Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCU Institutional Repository > 理學院 > 數學研究所 > 博碩士論文 >  Item 987654321/75226

 Please use this identifier to cite or link to this item: `http://ir.lib.ncu.edu.tw/handle/987654321/75226`

 Title: 應用Petviashvili方法求雙組份非線性薛丁格方程組的駐波解;The Numerical Approximation of Stationary Wave Solutions for Two-Component System of Nonlinear Schrodinger Equations by Using Generalization Petviashvili Method Authors: 諾斯拉Robbaniyyah, Nuzla Af′idatur Contributors: 國立中央大學 Keywords: 非线性薛定er方程;静止波;Nonlinear Schrodinger Equations;Stationary Wave;Petviashvili Method Date: 2017-07-04 Issue Date: 2017-10-27 17:24:46 (UTC+8) Abstract: 考慮這樣的穩態的非線性波動方程式：\$Mu+u^p=0\$，其中微分算子M是正定自伴算子，p是常數。只有一個方程式時，數值上一般可以用Petviashvili method求出孤立波解。此處我們的感興趣的問題是一些二維的雙組份非線性薛丁格方程組，我們將Petviashvili method推廣到此方程組，並得到數值上的收斂。; The Petviashvili method is a numerical method for obtaining fundamental solitary wave solutions of stationary scalar nonlinear wave equations with-power-law nonlinearity: ?Mu + up = 0, where M is a positive de nite and self-adjoint operator, and p is constant. Due to the case is system of solitary nonlinear wave equations, we generalize the Petviashvili method. We apply this generalized method for two-component system of nonlinear Schrodinger equations (NLSE) for 2-D. From the numerical results, if the spectral radius of the numerical scheme for system is less than one, then we get quick convergence of the numerical method. Appears in Collections: [數學研究所] 博碩士論文

Files in This Item:

File Description SizeFormat
index.html0KbHTML176View/Open