English  |  正體中文  |  简体中文  |  全文筆數/總筆數 : 80990/80990 (100%)
造訪人次 : 41078065      線上人數 : 798
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋


    請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/75947


    題名: 毫米波晶片天線設計;Millimeter-Wave On-Chip Antenna Design
    作者: 林大業;Lin, Ta-Yeh
    貢獻者: 電機工程學系
    關鍵詞: 毫米波;晶片天線;Millimeter-Wave;On-Chip Antenna
    日期: 2018-01-17
    上傳時間: 2018-04-13 11:24:08 (UTC+8)
    出版者: 國立中央大學
    摘要: 本博士論文主要藉由整合被動元件基板(IPD)平台進行相關毫米波晶片天線的研究與設計,論文第一部分的重點是利用CMOS / IPD覆晶組裝現有的空腔結構來產生天線輻射機制。在第二章中,介紹一種應用於毫米波頻段的雙頻晶片天線,所提出的天線架構主要是由槽線和覆晶空腔組成,並藉由兩個微帶線開路殘段透過C型槽線耦合以實現雙頻特性,由CMOS晶片與IPD基板所形成覆晶空腔其內部為空氣介質,可以減少損耗並提高天線增益。天線反射係數、輻射場形和天線增益均完成設計驗證與量測比對。根據量測結果顯示,此天線可以雙頻操作於V頻段和E頻段,量測的反射係數(小於-10 dB)其阻抗頻寬分別為6.1%和5.8%,量測的增益在58 GHz與77 GHz分別為-2 dBi與0.3 dBi。所提出的天線非常適合雙頻毫米波高速數據無線通信系統。
    論文的第二部分著重於使用傳統封裝的打線結構來當作天線輻射體並整合實現於IPD製程的功率分波器來完成毫米波圓極化天線設計。在第三章中,介紹了一種V頻段寬波束寬度左旋圓極化打線天線。天線的主要架構是由一個1對4串聯型環形功率分波器和4條環形圍繞的打線結構組成,具有寬波束寬度的特性。並詳細說明功率分波器的設計方法,整體天線的面積為2.2 x 2.2 。天線反射係數、輻射場形和天線增益均完成設計驗證與量測比對。根據量測結果顯示,天線可以操作於V頻段,量測的反射係數(小於-10 dB)其阻抗頻寬從51GHz到67GHz以上(> 28%),量測的天線增益在58 GHz時為-0.8 dBi,量測的AR從55 GHz至65 GHz 均小於3 dB,模擬的3 dB天線波束寬度大於180度。
    論文的最後一部分重點是介紹使用打線結構進行饋入耦合的毫米波IPD介質天線設計。在第四章中,提出一使用打線結構饋入的V頻段晶片級雙偏極化介質天線,方形介質共振體是以現有的IPD製程矽基板來實現,並由兩條相互垂直的打線結構耦合饋入,各自激發相互正交的兩個簡併模,此外本身的打線結構共振頻率也增強整體的天線頻寬。量測的天線頻寬從52.8 GHz至65 GHz。量測的隔離度在頻寬範圍下均大於20 dB。量測的天線增益在60 GHz時為4.5 dBi。所提出的設計可以提供用於圓極化系統的進一步應用。
    最後,概括本論文所提出之研究成果,以及未來可研究內容於第五章。
    ;In this dissertation, three type millimeter-wave on-chip antennas based on Integrated Passive Device (IPD) technology are presented. The first part of the dissertation focuses on using CMOS/IPD flip-chip cavity to achieve dual-band operation. In Chapter II, a dual-band antenna-in-package for millimeter-wave applications is presented. The proposed antenna, which consists of a radiating slot and an air-filled cavity, is fed by a microstrip loaded with two tuning open-circuited stubs through a coupling C-shape aperture to achieve dual-band characteristics. The air-filled cavity, which is formed by the space between CMOS chip and IPD substrate after flip-chip assembly process, can reduce loss and improve antenna gain. Simulation and measurement regarding antenna reflection coefficient, radiation pattern, and peak gain are conducted for design validation. The measured results show that the antenna can operate in V-band and E-band, and the impedance bandwidths with the reflection coefficient less than -10 dB are 6.1 % and 5.8 %, respectively. The measured gains are -2 dBi at 58 GHz and 0.3 dBi at 77 GHz, respectively. The proposed antenna is well suited for dual-band millimeter-wave high data rate wireless communication systems.
    The second part of the dissertation focuses on millimeter-wave circularly polarization antenna designs using bond-wire radiators. In Chapter III, a V-band wide-beamwidth left-handed circularly polarized wire-bond antenna is presented. The proposed design, which is implemented by using Integrated Passive Device (IPD) process, consists of a 1-to-4 series-type ring-shape microstrip power divider and four bond-wire radiators. The design of bond-wire radiator with wide-beamwidth characteristic is described. The design method of power divider is also explained in details. The proposed antenna has been fabricated and measured. The area of the fabricated antenna is of 2.2 x 2.2 . The simulation and measurement regarding antenna reflection coefficient, radiation pattern, peak gain, and axial ratio are conducted for design validation. The measured results show that the antenna can operate in V-band and the impedance bandwidth with less than -10 dB is from 51 GHz to 67 GHz or more ( > 28% ). The measured peak gain is -0.8 dBi at 58 GHz. The measured axial ratio is less than 3 dB from 55 GHz to 65 GHz. The simulated 3-dB antenna beamwidth is more than 180 degrees.
    The last part of the dissertation focuses on millimeter-wave IPD dielectric resonator antenna design using bond-wire feeding structures. In Chapter IV, a V-band chip-level dual-polarized dielectric resonator antenna (DRA) implemented by using bondwires and silicon-based integrated passive device (IPD) technology is proposed. The square-shaped resonator is fed by two bondwire coupling structures which excite two degenerate modes orthogonal to each other. The resonance of bondwire itself is also found to enhance the antenna bandwidth to cover the 60-GHz band. Reasonable agreement between the simulation and measurement is obtained. The measured antenna bandwidth is from 52.8 GHz to 65 GHz. The measured isolation is better than 20 dB at frequencies of interest. The measured antenna gain is 4.5 dBi at 60 GHz. The proposed design can provide further applications for circularly polarized systems.
    Finally, a summary of the research results and future work are concluded in Chapter V.
    顯示於類別:[電機工程研究所] 博碩士論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML297檢視/開啟


    在NCUIR中所有的資料項目都受到原著作權保護.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明