中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/77372
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41639233      Online Users : 1370
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/77372


    Title: 利用上下文感知最大化邊界神經網路提取疾病與疾病的關聯;Extracting disease-disease associations with context-aware max-margin neural network
    Authors: 盧韋良;Lu, Wei-Liang
    Contributors: 軟體工程研究所
    Keywords: 自然語言處理;文字探勘;機器學習;深度學習;natural language processing;text mining;machine learning;deep learning
    Date: 2018-07-23
    Issue Date: 2018-08-31 14:35:46 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 由於缺乏人工標註高品質的疾病之間關聯語料庫,在本篇論文中我們建構了一個疾病之間關聯語料庫,並用於建構與評估我們的系統。最後我們建一個末端對末端(End-to-end)的最大化邊界上下文感知神經網絡。在我們的實驗結果顯示相較於單純的卷積類神經網路而言,支持向量機達到 77.82% F1度量,高於CNN模型 2.47% F1度量。接著我們將卷積類神經網路的結果作為特徵值加入支持向量機分類元件中,檢查是否可以提升分類效果,而最好的實驗結果為 77.32% F1度量,比只使用該特徵值的支持向量機低 0.5% F1 度量,主要原因是在訓練支持向量機的同時無法同步更新類神經網路,導致分類效果沒有提升。因此我們建構一末端對末端最大化邊界上下文感知神經網絡來分類疾病關聯,達到最高的 84.34% F1度量,精確度80.65%和召回率88.39%。;In our study, we constructed a disease-association corpus then use it to build and evaluate the disease-association extraction system. Finally, we propose a max-margin context-aware neural network. The results show that the support vector machine(SVM) achieves the highest F1-measure of 77.82%. The SVM-based approach is higher than the convolutional neural networks(CNN) by F1-measure of 2.47%. Then we merge the softmax layer of CNN as feature to the SVM then check whether the performance was improved or not. However, the best result is an F1-measure of 77.32%, which is 0.5% lower than the original SVM which using only its feature. The possible reason may be the NN can’t be updated synchronously while training the SVM. Therefore, we constructed a max-margin context-aware neural network to classify disease associations and achieve the highest F1-measure of 84.34%.
    Appears in Collections:[Software Engineer] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML297View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明