中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/7785
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 80990/80990 (100%)
造访人次 : 42143080      在线人数 : 1250
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: http://ir.lib.ncu.edu.tw/handle/987654321/7785


    题名: 圖形的線性蔭度及星形蔭度;Linear Arboricity and Star Arboricity of Graphs
    作者: 黃文婷;Wen-Ting Huang
    贡献者: 數學研究所
    关键词: 完全三部圖;迴路的次方;完全多部圖;不限路徑數;星形蔭度;線性蔭度;complete tripartite graph;complete multipartite graph;power of cycle;linear arboricity;star arboricity;unrestricted path number
    日期: 2003-07-02
    上传时间: 2009-09-22 11:05:21 (UTC+8)
    出版者: 國立中央大學圖書館
    摘要: 一個線性森林(linear forest)是一個森林(forest),其中每一個部分(component)是一條路徑(path)。令G是一個圖(graph)。G的蔭度(arbori- city),用a(G)來表示,是分解G的邊所需要的最少的森林數。G的線性蔭度(linear arboricity),用la(G)來表示,是分解G的邊所需要的最少的線性森林數。G的不限路徑數(unrestricted path number),是覆蓋G的邊所需要的最少的路徑數。在第二章中,我們得到規則完全r部圖(regular complete r-partite graphs)的線性蔭度及不限路徑數。在第三章中,我們得到完全三部圖(complete tripartite graphs)的線性蔭度。 對一個圖G一個正整數k,令G^k代表V(G)=V(G^k)且E(G^k)={uv:u,v in V(G), u e u, d_G(u,v)le k}的圖,其中d_G(u,v)代表在G中u和v的距離。我們稱G^k為G的k次方。 一個每個部分(component)都是星形(star)的森林稱為星林(star for- est )。G的星形蔭度(star arboricity),用sa(G)來表示,是分解G的邊所需要的最少的星林數。在第四章中,我們得到迴路(cycle)的次方的星形蔭度。在第五章中我們進一步提出了一些相關的問題。 Let G be a graph. The unrestricted path number of G, denoted by ho(G), is the minimum number of paths needed to cover the edges of G. The arboricity of G, denoted by a(G), is the minimum number of forests needed to decompose the edges of G. A linear forest is a forest in which each component is a path. The linear arboricity of G, denoted by la(G), is the minimum number of linear forests needed to decompose the edges of G. In Chapter 2, we study the linear arboricity and unrestricted path number of regular complete r-partite graphs. Let K_{r imes n} denote the complete r-partite graph such that each part has n$vertices, For rge 2, we obtain a(K_{r imes n})= la(K_{r imes n})= ho (K_{r imes n})=lceil frac{(r-1)n+1}{2} ceil. In Chapter 3, we study the linear arboricity of complete tripartite graphs. Suppose n_1ge n_2ge n_3, we obtain la(K_{n_1, n_2, n_3})=n_1+1 if n_1=n_2=n_3, and la(K_{n_1, n_2, n_3})=lceilfrac{n_1+n_2}{2} ceil otherwise. For a graph G and a positive integer k, let G^k denote the graph with V(G^k)=V(G) and E(G^k)={uv : u, vin V(G), u e v, d_G(u, v)le k} where d_G(u, v) denotes the distance between u and v in G. We call G^k the k-th power of G. A star forest is a forest in which each component is a star. The star arboricity of a graph G, denoted by sa(G), is the minimum number of star forests needed to decompose the edges of G. In Chapter 4, we study the star arboricity of power of cycles. Suppose that k, n are integers such that 2le kle lfloorfrac{n}{2} floor-1, we obtain sa(C_n^k)=k+1 if n=0(mod k+1), and sa(C_n^k)=k+2 otherwise In Chapter 5, some problems are proposed for further investigations.
    显示于类别:[數學研究所] 博碩士論文

    文件中的档案:

    档案 大小格式浏览次数


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明