中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/78019
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 73032/73032 (100%)
Visitors : 23250940      Online Users : 392
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version

    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/78019

    Title: 公路交通運輸對於山谷地形郊區空氣品質之影響;Influence of road traffic with air quality in the suburban valley topography
    Authors: 翁穎志;WENG, YING-ZHI
    Contributors: 環境工程研究所在職專班
    Keywords: 空氣品質;交通污染;坪林;山谷地形;Air Quality;Traffic Pollution;Pinglin;Valley Topography
    Date: 2018-07-27
    Issue Date: 2018-08-31 15:08:47 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 本研究將探討公路交通運輸之廢氣污染對於郊區山谷地形空氣品質之關聯性,研究目的包括瞭解近年來後坪林地區空氣品質變化、分別分析平假日空氣污染物濃度、探討坪林地區空氣品質受鄰近區域影響之情形,最後再以分級光化強度探討二次氣膠污染貢獻及特徵。
      另外由分級光化強度探討二次氣膠評估結果顯示當6至8月間O3平均濃度(以環保署基隆、汐止、宜蘭測站O3平均為背景)小於40 ppb時,坪林測站所測得之PM10及CO相關性較佳(r=0.64,R2=0.416),故推測光化學反應所生成之二次氣膠可能亦會增加坪林地區懸浮微粒濃度(PM10、PM2.5),又以夏季陽光照度高、臭氧濃度高時影響較大。
    ;In this study, data collected from Pinglin air quality station are using to investigate the correlation of air pollution from road transport with suburban valley topographic air quality. The research aims include understanding the Pinglin area air quality changes in recent years, analyzing air quality in weekdays and holidays, investigate the air pollution that may influence from neighboring regions and explore on the contribution and characteristics of secondary aerosol pollution by fractional actinic intensity.
      According to the results from the monitoring of Pinglin air quality station from 2013 to 2017, the gaseous pollutants NOx, SO2, and CO were all far below the air quality standards, while the particulate pollutants TSP, PM10, and PM2.5 were also usually been lower than the standards either, shows that the air quality in the area is in good condition. To further compare NOx and CO concentrations, when the daily traffic volume (using Pinglin interchange car numbers as the traffic assessment indicator ) is in the fourth quartile of all traffic volume, the corresponding average concentration is greater than the daily traffic volume in the first quartile about 20.0% and 4.5% higher. Also, compared with the correlation of NOx and CO, when the relative humidity is less than 70%, the correlation coefficient r of NOx and CO concentration is 0.61 (R2=0.369) and it is moderately correlated. However, as the ambient humidity increases, the correlation coefficient between NOx and CO are getting lower. The decrease in r may be due to the fact that when the humidity in the environment is higher, NO2 in NOx is more soluble in water than CO and forms nitric acid and nitrous acid. Therefore, when the relative humidity is lower, the correlation between the NOx and CO concentrations is higher.
      Based on the assessment of the air quality that may be affected by the neighboring regions, comparing the EPA′s Keelung air quality station on the north side of Pinglin with different wind speeds, the result shows that when the average daily wind speed at the Keelung station increases, the PM10 concentrations at the two stations in Keelung and Pinglin are more correlated with each other. Therefore, in addition to local traffic pollution emissions, when the wind speed in neighboring areas is high, it may also bring pollutants located in the upwind area into Pinglin.
      In addition, the secondary aerosol evaluation results from the graded actinic intensity shows that when the average O3 concentration (based on the O3 average of the EPA Keelung, Xizhi, and Yilan stations) is less than 40 ppb from June to August, the correlation between PM10 and CO in Pinglin station is better (r=0.64, R2=0.416), so it is inferred that the secondary aerosol generated by the photochemical reaction may also increase the suspended particulate concentration (PM10, PM2.5) in the Pinglin region. In summer, high sunlight intensity and high ozone concentration may have a greater influence.
    Appears in Collections:[Executive Master of Environmental Engineering] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat

    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback  - 隱私權政策聲明