English  |  正體中文  |  简体中文  |  Items with full text/Total items : 75368/75368 (100%) Visitors : 26626862      Online Users : 140
 RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
 Scope All of NCUIR College of Science All rights reserved    Graduate Institute of Mathematics       --Electronic Thesis & Dissertation Tips: please add "double quotation mark" for query phrases to get precise resultsplease goto advance search for comprehansive author search Adv. Search
 NCUIR > College of Science All rights reserved > Graduate Institute of Mathematics > Electronic Thesis & Dissertation >  Item 987654321/7908

 Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/7908

 Title: 2-decomposable, 3-decomposable multipaths and t-decomposable spiders Authors: 張凱涵;Kai-han Chang Contributors: 數學研究所 Keywords: 圖形分解;多重邊路圖;蜘蛛圖;multipaths;decomposition;spiders Date: 2007-06-28 Issue Date: 2009-09-22 11:08:46 (UTC+8) Publisher: 國立中央大學圖書館 Abstract: 一個圖G可以被分解成t個同構的子圖，我們稱G是可t分解的。 具有多重邊的路(path)稱為multipath。 一個樹(tree)只有唯一一個點(vertex) degree \$geq\$ 3，稱為蜘蛛(spider). 在這篇論文中， 我們探討了可二分解和三分解的multipaths與可t分解的蜘蛛。 A graph G is t-decomposable if and only if G can be decomposed into t isomorphic subgraphs. A multipath is a path with multiple edges allowed. A spider is a tree which has a unique vertex with degree ≥ 3. In this thesis, we investigate 2-decomposable and 3-decomposable multipaths and t-decomposable spiders. Appears in Collections: [Graduate Institute of Mathematics] Electronic Thesis & Dissertation

Files in This Item:

File SizeFormat