中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81168
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 59437301      在线人数 : 990
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/81168


    题名: 基于注意和情绪觸發的序列到序列短文本對話學習模型設計研究;Emotionally-Triggered Short Text Conversation using Attention-Based Sequence Generation Models
    作者: 李胤龍;Montella, Sébastien
    贡献者: 資訊工程學系
    关键词: Short-Text Conversation task;Attention-based Sequence-to-Sequence;Generative Adversarial Network (GAN);Short-Text Conversation task;Attention-based Sequence-to-Sequence;Generative Adversarial Network (GAN)
    日期: 2019-07-25
    上传时间: 2019-09-03 15:37:53 (UTC+8)
    出版者: 國立中央大學
    摘要: 在情緒認知裡,語意認知受到高度的重視。結合自然語言生成的研究,透過回應,產生連續的特定情緒來回覆人們,進一步來使機器更人性化。 對於文本或句子的情感分析問題已被廣泛研究和改進,但針對文句內容產生相對應情緒的研究始終被忽視。 同時,受惠於 Generative Adversarial Network (GAN),生成模型最近得到一系列的改進,使自然語言處理和計算機視覺中相繼得到滿意的結果。然而,當應用於文本生成時,對抗性學習可能導致產生的文本質量低落且模型崩壞。 在本文中,我們利用社交媒體單一對話的訓練資料,來提出一種新的訓練方法,以便為NTCIR-14 研討會的 Short-Text Conversation task (STC-3) 生成語法正確和情感一致的答案。 我們參照了 StarGAN 的框架,使用 Attention-based Sequence-to-Sequence 來作為我們的文本生成器。 我們使用情感鑲嵌和情緒分類器的輸出來幫助模型訓練。 為了避免上述對抗網絡的問題,我們選擇使用 maximum likelihood 或 adversarial loss 來訓練我們的文本生成器。;Emotional Intelligence is a field from which awareness is heavily being raised. Coupled with language generation, one expects to further humanize the machine and be a step closer to the user by generating responses that are consistent with a specific emotion. The analysis of sentiment within documents or sentences have been widely studied and improved while the generation of emotional content remains under-researched. Meanwhile, generative models have recently known series of improvements thanks to Generative Adversarial Network (GAN). Promising results are frequently reported in both natural language processing and computer vision. However, when applied to text generation, adversarial learning may lead to poor quality sentences and mode collapse. In this paper, we leverage one-round data conversation from social media to propose a novel approach in order to generate grammatically-correct-and-emotional-consistent answers for Short-Text Conversation task (STC-3) for NTCIR-14 workshop. We make use of an Attention-based Sequence-to-Sequence as our generator, inspired from StarGAN framework. We provide emotion embeddings and direct feedback from an emotion classifier to guide the generator. To avoid the aforementioned issues with adversarial networks, we alternatively train our generator using maximum likelihood and adversarial loss.
    显示于类别:[資訊工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML153检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明