中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81386
English  |  正體中文  |  简体中文  |  全文笔数/总笔数 : 83776/83776 (100%)
造访人次 : 60151130      在线人数 : 1050
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    jsp.display-item.identifier=請使用永久網址來引用或連結此文件: https://ir.lib.ncu.edu.tw/handle/987654321/81386


    题名: 基於卷積神經網路之語音辨識;Speech Recognition by Using Convolutional Neural Network
    作者: 楊恕先;Yang, Shu-Sian
    贡献者: 電機工程學系
    关键词: 語音辨識;深度學習;神經網路;speech recognition;deep learning;neural network
    日期: 2019-06-27
    上传时间: 2019-09-03 15:49:49 (UTC+8)
    出版者: 國立中央大學
    摘要: 本論文在探討如何利用深度學習來進行語音辨識,而使用的辨識方法是先透過梅爾倒頻譜係數((Mel frequency cepstral coefficients, MFCCs)取得語音特徵參數,並輸入卷積神經網路(Convolutional Neural Network, CNN)進行語音辨識。
    此法與傳統語音辨識方法最大不同是在於不需要建立聲學模型,以中文為例就省去建立大量聲母(consonant)、韻母(vowel)比對的時間。藉由透過MFCCs取得特徵參數後就可以透過卷積神經網路實現語音辨識,並且不會受到語言種類的限制。
    ;The thesis developed a speech recognition method for automatic speech recognition. In this speech recognition method, we obtained the speech feature parameters through Mel frequency cepstral coefficients and input a Convolutional Neural Network. The main difference between this Convolutional Neural Network speech recognition method and traditional speech recognition method is that it does not need to establish an acoustic model. For example, in Chinese, it saved a lot of time without establishing a large number of consonant and vowel models. After obtaining the speech feature parameters through the MFCCs, speech recognition is finished through Convolutional Neural Network.
    显示于类别:[電機工程研究所] 博碩士論文

    文件中的档案:

    档案 描述 大小格式浏览次数
    index.html0KbHTML208检视/开启


    在NCUIR中所有的数据项都受到原著作权保护.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明