現今,綠能發電的議題隨著地球的暖化越來越被重視,在社會發展的同時,有許多的能量轉化成熱能流失掉,而如何回收這些流失掉的能量是現在全球的目標。熱電效應是其中一種選擇,此效應是一種在電能與熱能間直接轉換的一種方式,可以應用於廢熱回收、熱電致冷、溫差發電等。而熱電模組具其獨有的優點,例如:不須保養、無毒、安全等。因此許許多多的熱電材料就此被開發出來。而現今智慧生活的到來、穿戴式裝置的普及化與輕薄化,能擺放電池的空間越來越小,這些設備的能源供給漸漸地變成一個重要的議題。其中一個方式就是利用薄型熱電模組。一個熱電模組的好壞主要取決於材料本身的特性,因此提升材料的性能是最重要的關鍵。 本論文著重於薄型P、N型材料的摻雜、量測與模組的製作。透過摻雜反應使得矽奈米粉末變成P/N型材料,再與鎂、錫、銀之奈米粉末混和均勻並冷壓成厚度僅為300μm的塊材,在不同溫度和時間下進行燒結,去探討在哪一種條件中可以獲得最好的熱電特性。藉由改善傳統模組的結構與製程,以找尋到的最佳製程條件為基礎去製作模組並量測其特性。 ;Nowadays, the topics of renewable energy generation have attracted much attention. Among them, the conversion from thermal to electrical energy is one important research topic. The thermoelectric effect can be applied to waste heat recovery, thermoelectric cooling, and power generation, etc. The thermoelectric modules could be maintenance-free, non-toxic, and safe. These properties make the thermoelectric modules potential for the body heat energy scavenging and battery recharging. This thesis focuses on the materials processing, property measurement and module fabrication of sub-millimeter-thick P- and N-type thermoelectric materials. The Si nanopowder was doped into P- and N-type, then mixed with magnesium, tin, silver nanopowder and cold-pressed into 300-μm-thick flakes. The samples were sintered at different temperatures and time to obtain the optimum annealing parameter. By improving the structure and processes, the thermoelectric module was fabricated and measured from room temperature to 200 oC.