中大機構典藏-NCU Institutional Repository-提供博碩士論文、考古題、期刊論文、研究計畫等下載:Item 987654321/81503
English  |  正體中文  |  简体中文  |  Items with full text/Total items : 80990/80990 (100%)
Visitors : 41641256      Online Users : 1422
RC Version 7.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version


    Please use this identifier to cite or link to this item: http://ir.lib.ncu.edu.tw/handle/987654321/81503


    Title: 應用多時期Sentinel-1 合成孔徑雷達影像進行崩塌及淹水偵測-以印尼爪哇島Pacitan地區為例;Landslide and Flood Mapping Using Multi-Temporal Sentinel-1 C-band SAR Imagery in Pacitan, East Java, Indonesia
    Authors: 曼黎;Huri, Mohammad Daman
    Contributors: 遙測科技碩士學位學程
    Keywords: 崩塌;淹水;合成孔徑雷達;Cempaka颱風;Sentinel-1;Landslide;Flood;Synthetic Aperture Radar (SAR);Sentinel-1;Cempaka Tropical Cyclone
    Date: 2019-08-22
    Issue Date: 2019-09-03 15:57:42 (UTC+8)
    Publisher: 國立中央大學
    Abstract: 印尼鄰近赤道,受颱風災害頻繁,印尼國家災害管理局於2016年指出2011年至2015年期間在印尼各個地區發生約2,425起土石流災害事件,其中爪哇島(Java Island)由其為甚。2017年11月27日至30日期間,位於爪哇島的南海岸-東爪哇省的Pacitan地區受到Cempaka颱風侵襲,為印尼受災最嚴重的地區之一,發生淹水與多處崩塌。在災害發生時,對於崩塌和淹水地區的緊急偵測,對於災害急救與處置極為重要,而目前利用衛星資料可有效應、且經濟地進行災害偵測的工作。在多種衛星資源中,合成孔徑雷達(SAR)受到雲霧覆蓋的影響較小,此特性應在颱風事件期間或災後的快速偵測中非常有用,然而使用雷達資料同時針對淹水及崩塌進行偵測之研究較少,且淹水地區與崩塌地在雷達迴波訊號強度較低,兩者特性相似,不易進行區判。本研究認為可以利用變遷偵測之概念,使用多時序的雷達影像針對此問題進行突破。操作上,本研究應用多時期之Sentinel-1衛星C波段影像,針對Cempaka颱風事件,同時進行崩塌和淹水區域之偵測試驗。首先分析Sentinel-1的多時序影像中崩塌和淹水區域的後向散射係數之時序變遷特性。其次,基於上述特性利用支援向量機(Support Vector Machine, SVM)對崩塌和淹水區域進行影像分類,並對分類結果進行精度評估。試驗結果發現,整合VV及VH極化資料之6組時序影像(共12個波段組合)有最佳的分類結果,總體精度可達81.42%,kappa係數為0.51,說明本研究提出之方法能有效地同時進行崩塌即淹水的監測。;The National Disaster Management Agency of Indonesia (2016) recorded 2,425 incidents of land movement disaster during 2011 to 2015, with locations occurring in various parts of Indonesia. In the South Coast of Java Island, Pacitan where located in East Java is one of the most heavily damaged area, during the tropical cyclones, Cempaka, from 27 to 30 November 2017, and induced floods in the lowland area and landslides in the mountainous area. For landslide and flood detection, satellite data is effective to be applied for larger area with economic cost. Among many kinds of satellite resources, synthetic aperture radar (SAR) has less limitation operating in cloudy conditions, which is considered a very useful characteristic for landslide and flood rapid mapping during cloudy condition. With applying SAR data, few studies have focused on the detection of flood and landslide at once, considering their similar backscattering characteristics which are normally lower and difficult to be distinguished. However, this study proposed a method which analyzes the multi-temporal SAR backscattering to investigate the difference between flood and landslide in time domain.
    This study focuses on availability of Sentinel-1 C-Band SAR imagery to detect the landslide and flooded area for Cempaka event. The time series of Sentinel-1 were pre-processed to analyze the backscatter change over the landslide and flooded area. Then, the SVM (Support Vector Machine) classifier was applied to map landslide and flooded areas. The accuracy assessment shows that the best classification result is obtained when combining both six VV and six VH polarization time-series data (twelve-bands in SVM classification). The overall accuracy achieves 81.42% and kappa coefficient 0.51. The result indicates the applicability of the proposed method for landslide and flood detection.
    Appears in Collections:[Master of Science Program in Remote Sensing Science and Technology ] Electronic Thesis & Dissertation

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML329View/Open


    All items in NCUIR are protected by copyright, with all rights reserved.

    社群 sharing

    ::: Copyright National Central University. | 國立中央大學圖書館版權所有 | 收藏本站 | 設為首頁 | 最佳瀏覽畫面: 1024*768 | 建站日期:8-24-2009 :::
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 隱私權政策聲明